156 research outputs found

    High‐quality biobanks : pivotal assets for reproducibility of OMICS‐data in biomedical translational research

    Get PDF
    Human biospecimen samples (HBS) and associated data stored in biobanks (also called "biotrusts," "biorepositories," or "biodistributors") are very critical resources for translational research. As HBS quality is decisive to the reproducibility of research results, biobanks are also key assets for new developments in precision medicine. Biobanks are more than infrastructures providing HBS and associated data. Biobanks have pioneered in identifying and standardizing sources of preanalytical variations in HBS, thus paving the way for the current biospecimen science. To achieve this milestone, biobankers have successively assumed the role of "detective," and then "architect," to identify new detrimental impact of preanalytical variables on the tissue integrity. While standardized methods in omics are required to be practiced throughout research communities, the accepted best practices and standards on biospecimen handling are generally not known nor applied by researchers. Therefore, it is mandatory to raise the awareness within omics communities regarding not only the basic concepts of collecting, storing, and utilizing HBS today, but also to suggest insights on biobanking in the cancer omics context

    Rationalized development of a campus-wide cell line dataset for implementation in the biobank LIMS system at Bioresource center Ghent

    Get PDF
    The Bioresource center Ghent is the central hospital-integrated biobank of Ghent University Hospital. Our mission is to facilitate translational biomedical research by collecting, storing and providing high quality biospecimens to researchers. Several of our biobank partners store large amounts of cell lines. As cell lines are highly important both in basic research and preclinical screening phases, good annotation, authentication, and quality of these cell lines is pivotal in translational biomedical science. A Biobank Information Management System (BIMS) was implemented as sample and data management system for human bodily material. The samples are annotated by the use of defined datasets, based on the BRISQ (Biospecimen Reporting for Improved Study Quality) and Minimum Information About Biobank data Sharing (MIABIS) guidelines completed with SPREC (Standard PREanalytical Coding) information. However, the defined dataset for human bodily material is not ideal to capture the specific cell line data. Therefore, we set out to develop a rationalized cell line dataset. Through comparison of different datasets of online cell banks (human, animal, and stem cell), we established an extended cell line dataset of 156 data fields that was further analyzed until a smaller dataset-the survey dataset of 54 data fields-was obtained. The survey dataset was spread throughout our campus to all cell line users to rationalize the fields of the dataset and their potential use. Analysis of the survey data revealed only small differences in preferences in data fields between human, animal, and stem cell lines. Hence, one essential dataset for human, animal and stem cell lines was compiled consisting of 33 data fields. The essential dataset was prepared for implementation in our BIMS system. Good Clinical Data Management Practices formed the basis of our decisions in the implementation phase. Known standards, reference lists and ontologies (such as ICD-10-CM, animal taxonomy, cell line ontology...) were considered. The semantics of the data fields were clearly defined, enhancing the data quality of the stored cell lines. Therefore, we created an essential cell line dataset with defined data fields, useable for multiple cell line users

    Biobank quality management in the BBMRI.be network

    Get PDF
    From as early as 2005, different guidelines and quality standards covering biobank activities and sample handling methods have been developed to improve and guarantee the reproducibility of biomarker research. Ten years on, the BBMRI.be Quality working group wanted to gauge the current situation of these aspects in the biobanks of the BBMRI.be network. To this end, two online surveys were launched (fall 2017 and fall 2018) to the biobank quality managers in the BBMRI.be network to determine the status and setup of their current quality management system (QMS) and how their QMS and related practices have evolved over a 14 month time period. All biobanks addressed by the two surveys provided a complete response (12 and 13, respectively). A QMS was implemented in 85% of biobanks, with 4 standards emerging as primary basis. Supplementary guidelines were used, with a strong preference for the ISBER best practices for biobanks. The Standard Preanalytical Code-an indicator of the preanalytical lifecycle of a biospecimen impacting the downstream analysis results-was already implemented in 50% of the biobanks while the other half intends future implementation. To assess and maintain the quality of their QMS, 62% of biobanks used self-assessment tools and 71% participated in proficiency testing schemes. The majority of biobanks had implemented procedures for general and biobank specific activities. However, policies regarding the business and sustainability aspect of biobank were only implemented in a limited number of biobanks. A clear desire for a peer-review audit was expressed by 69% of biobanks, with over half of them intending to implement the recently published biobank standard ISO20387. Overall, the biobanks of the BBMRI.be network have actively implemented a solid quality approach in their practices. The implementation of ISO 20387 may bring further professionalization of activities. Based on the needs expressed in this survey, the Quality working group will be setting up an audit program for the BBMRI.be biobanks, to enhance, harmonize and streamline their activities. On the whole, the biobanks in the BBMRI.be network are able to substantially contribute to translational research, as a primary facilitator guaranteeing high quality standards and reproducibility

    Bimetra Biobank: A High Quality Biobank Facility to Stimulate Translational Biomedical Research

    Get PDF
    Bimetra Biobank is the central high quality biorepository of University Hospital Ghent in collaboration with Ghent University (Belgium). Fully operational since 2015 in a new state-of-the-art biobank facility, Bimetra Biobank acts as a core facility for researchers and third parties looking for high-quality annotated clinical biospecimens. Bimetra Biobank stores about 120.000 clinical samples, both historical collections and prospective collections (disease-based collections, population-based collections and basic research collections) within well-defined and ethically approved research projects. Through a clear governance structure compliant with applicable laws, collections are operationally managed by Bimetra biobank personnel and samples releases are coordinated through collection specific coordinators and advisory boards. Biobank collections are open for collaborations to the international scientific community

    Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening

    Get PDF
    Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father's age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications

    Control of Fusarium verticillioides (Sacc.) Nirenberg and fumonisins by using a combination of crop protection products and fertilization

    Get PDF
    Fusarium verticillioides is the most common fungal pathogen associated with maize ear rot in Tanzania. In a two-year trial, we investigated the efficacy of crop protection (insecticide and/or fungicide) and fertilizer (nitrogen and/or phosphorus) treatments in reducing the occurrence of F. verticillioides and its mycotoxins in maize grown in Tanzania. Seasonal differences were seen to have a substantial influence on the incidence and severity of insect infestation, Fusarium ear and kernel rot, biomass of F. verticillioides and contamination with fumonisins. With regard to the application of fertilizers, it was concluded that the impact on maize stalk borer injury, Fusarium symptoms and fumonisin levels was not significant, whereas crop protection significantly reduced maize damage. The application of an insecticide was most effective in reducing insect injury and as a result of the reduced insect injury the insecticide treatment also resulted in a significant decrease in Fusarium symptoms. In 2014, fumonisin levels were also significantly lower in maize treated with an insecticide. Additionally, significant positive correlations between insect damage and Fusarium symptoms were observed. In conclusion, this study clearly shows that application of an insecticide alone or in combination with a fungicide at anthesis significantly reduces insect damage and consequently reduces F. verticillioides infection and associated fumonisin contamination

    Relation between telomerase activity, hTERT and telomere length for intracranial tumours

    Get PDF
    Human linear chromosomes are capped by specialized DNA-protein structures called telomeres. The present study analysed the telomerase activity, hTERT protein and telomere length in meningiomas and gliomas in relation to their WHO grading. Fifty-three freshly dissected tumour biopsies were analysed for telomerase activity, hTERT protein expression and telomere length. Telomerase activity was examined in 41 of the 53 biopsies. Telomerase activity was detected in 3 of 35 (8.6%) screened meningiomas (I benign, 1 atypical and I malignant meningioma). For hTERT expression, 56.4% of meningiomas were positive with a mean labelling index (hTERT LI) of 31.3% (SD=26.5) for the hTERT positive meningiomas. The mean telomere length for meningiomas was 6.983 kb (SD=1.969). For gliomas, no active telomerase was detected in 2 low-grade astrocytomas, whereas three of the four screened glioblastomas were positive for telomerase activity. The only hTERT protein positive astrocytoma had a mean labelling index of 9.0%. On the other hand, the hTERT LI for glioblastomas was 53.6% (SD=28.0). The two low-grade astrocytomas had a telomere length of 14.310 and 9.236 kb. The anaplastic astrocytoma had a telomere length of 4.903 kb and the glioblastomas 5.767 kb (SD=2.042). The normal meningeal and neuronal tissue is negative for telomerase activity and hTERT. The length was +/- 10.000 kb. These results indicate that telomere shortening may be a critical step in pathogenesis of atypical and malignant meningiomas and gliomas. Critical telomere shortening in vitro was shown to activate telomerase

    Molecular diagnostics for congenital hearing loss including 15 deafness genes using a next generation sequencing platform

    Get PDF
    Background: Hereditary hearing loss (HL) can originate from mutations in one of many genes involved in the complex process of hearing. Identification of the genetic defects in patients is currently labor intensive and expensive. While screening with Sanger sequencing for GJB2 mutations is common, this is not the case for the other known deafness genes (> 60). Next generation sequencing technology (NGS) has the potential to be much more cost efficient. Published methods mainly use hybridization based target enrichment procedures that are time saving and efficient, but lead to loss in sensitivity. In this study we used a semi-automated PCR amplification and NGS in order to combine high sensitivity, speed and cost efficiency. Results: In this proof of concept study, we screened 15 autosomal recessive deafness genes in 5 patients with congenital genetic deafness. 646 specific primer pairs for all exons and most of the UTR of the 15 selected genes were designed using primerXL. Using patient specific identifiers, all amplicons were pooled and analyzed using the Roche 454 NGS technology. Three of these patients are members of families in which a region of interest has previously been characterized by linkage studies. In these, we were able to identify two new mutations in CDH23 and OTOF. For another patient, the etiology of deafness was unclear, and no causal mutation was found. In a fifth patient, included as a positive control, we could confirm a known mutation in TMC1. Conclusions: We have developed an assay that holds great promise as a tool for screening patients with familial autosomal recessive nonsyndromal hearing loss (ARNSHL). For the first time, an efficient, reliable and cost effective genetic test, based on PCR enrichment, for newborns with undiagnosed deafness is available
    • 

    corecore