20 research outputs found

    Insulin resistance associates with hepatic lobular inflammation in subjects with obesity

    Get PDF
    Purpose: Obese subjects with nonalcoholic fatty liver disease (NAFLD) are more prone to develop additional metabolic disturbances such as systemic insulin resistance (IR) and type 2 diabetes. NAFLD is defined by hepatic steatosis, lobular inflammation, ballooning and stage of fibrosis, but it is unclear if and which components could contribute to IR. Objective: To assess which histological components of NAFLD associate with IR in subjects with obesity, and if so, to what extent. Methods: This cross-sectional study included 78 obese subjects (mean age 46 +/- 11 years; BMI 42.2 +/- 4.7 kg/m(2)). Glucose levels were analysed by hexokinase method and insulin levels with electrochemiluminescence. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) was calculated. Liver biopsies were evaluated for histological components of NAFLD. Results: A positive association between overall NAFLD Activity Score and HOMA-IR was found (r(s) = 0.259, P = 0.022). As per individual components, lobular inflammation and fibrosis stage were positively associated with HOMA-IR, glucose and insulin levels (P < 0.05), and HOMA-IR was higher in patients with more inflammatory foci or higher stage of fibrosis. These findings were independent of age, BMI, triglyceride levels, diabetes status and sex (all P < 0.043). In a combined model, lobular inflammation, but not fibrosis, remained associated with HOMA-IR. Conclusion: In this group of obese subjects, a major contributing histological component of NAFLD to the relation between NAFLD severity and IR seems to be the grade of hepatic lobular inflammation. Although no causal relationship was assessed, preventing or mitigating this inflammatory response in obesity might be of importance in controlling obesity-related metabolic disturbances

    Serum vascular cell adhesion molecule-1 predicts significant liver fibrosis in non-alcoholic fatty liver disease

    No full text
    BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide and is strongly associated with obesity, dyslipidemia and insulin resistance. NAFLD often presents as simple steatosis (NAFL) but can progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Current non-invasive biomarkers are not tailored to identify significant (>= F2) fibrosis, although recent guidelines recommend a stringent follow-up of this patient population. We and others have reported on the role of pathological angiogenesis in the pathogenesis of NAFLD, highlighting pro-angiogenic factors as potential diagnostic markers. OBJECTIVE: To investigate the applicability of angiogenic and endothelial dysfunction markers as non-invasive diagnostic tools for NASH or NASH-associated fibrosis in obese patients. METHODS: In a prospective cross-sectional study, male patients undergoing bariatric surgery (n = 61) and control patients (n = 35) were recruited. Serum protein levels and visceral adipose tissue gene expression of endothelial dysfunction and angiogenic markers were analyzed by multiplex bead-based assay and quantitative RT-PCR, respectively. For validation, we recruited a second cohort of patients undergoing bariatric surgery (n = 40) and a cohort of NAFLD patients from our outpatient clinic (n = 30). RESULTS: We identified serum vascular cell adhesion molecule-1 (VCAM-1) as an independent predictor for >= F2 fibrosis (median 14.0 vs 8.7 ng ml(-1) in patients with and without significant fibrosis; P<0.0001) with an area under the receiver-operating characteristics (AUROC) curve of 0.80. The cutoff point of 13.2 ng ml(-1) showed a sensitivity of 80% and specificity of 83%. In line with these results, VCAM-1 visceral adipose tissue gene expression was also elevated in patients with fibrosis (P=0.030). In the bariatric surgery and clinical validation cohorts, VCAM-1 displayed similar AUROCs of 0.89 and 0.85, respectively. CONCLUSIONS: VCAM-1 levels are able to accurately predict significant (>= F2) fibrosis in NAFLD patients

    Association of recently described adipokines with liver histology in biopsy-proven non-alcoholic fatty liver disease: a systematic review

    No full text
    The prevalence of non-alcoholic fatty liver disease (NAFLD) is rising, as is the prevalence of obesity and type 2 diabetes. It is increasingly recognized that an impaired pattern in adipokine secretion could play a pivotal role in the development of NAFLD. We performed a systematic review to evaluate the potential link between newly described adipokines and liver histology in biopsy-proven NAFLD patients. A computerized literature search was performed in PubMed, EMBASE and Web of Science electronic databases. Thirty-one cross-sectional studies were included, resulting in a total of seven different investigated adipokines. Studies included in this review mainly had a goodmethodological quality. Most adipokineswere suggested to be involved in the inflammatory response that developswithin the context ofNAFLD, either at hepatic or systemic level, and/or hepatic insulin resistance. Based on literature, clinical studies suggest that chemerin, resistin and adipocyte-fatty-acid-binding protein potentially are involved in NAFLD pathogenesis and/or progression. However, major inconsistency still exists, and there is a high need for larger studies, together with the need of standardized assays to determine adipokine levels

    Histologically proven hepatic steatosis associates with lower testosterone levels in men with obesity

    Get PDF
    Men with obesity often present with low testosterone (T) and sex hormone-binding globulin (SHBG) levels. Several mechanisms for this have been proposed, but as SHBG is secreted by hepatocytes and sex steroids undergo hepatic metabolization, this study investigates whether severity and histological components of nonalcoholic fatty liver disease (NAFLD) are associated with sex steroid levels in obese men. This cross-sectional study included 80 obese men (age: 46 +/- 11 years; body mass index: 42.2 +/- 5.5 kg m-2). Serum levels of total T and estradiol (E2) were measured using liquid chromatography coupled with tandem mass spectroscopy (LC/MS-MS) and SHBG and gonadotropins by immunoassay. Liver biopsies were evaluated using Steatosis, Activity, and Fibrosis scoring. Participants with steatohepatitis had similar median (1stquartile-3rd quartile) total T levels (7.6 [5.0-11.0] nmol l-1 vs 8.2 [7.2-10.9] nmol l-1; P = 0.147), lower calculated free T (cFT) levels (148.9 [122.9-188.8] pmol l-1 vs 199.5 [157.3-237.6] pmol l-1; P = 0.006), and higher free E2/T ratios (10.0 [6.4-13.9] x10-3 vs 7.1 [5.7-10.7] x10-3

    Determinants of testosterone levels in human male obesity

    Get PDF
    Testosterone (T) levels are decreased in obese men, but the underlying causes are incompletely understood. Our objective was to explore the relation between low (free) T levels and male obesity, by evaluating metabolic parameters, subcutaneous adipose tissue (SAT) aromatase expression, and parameters of the hypothalamic–pituitary–gonadal axis. We recruited 57 morbidly obese men [33 had type 2 diabetes (DM2)] and 25 normal-weight men undergoing abdominal surgery. Fourteen obese men also attended a follow-up, 2 years after gastric bypass surgery (GBS). Circulating T levels were quantified by LC–MS/MS, whereas free T levels were measured using serum equilibrium dialysis and sex hormone-binding globulin, luteinizing hormone, and follicle-stimulating hormone by immunoassay. SAT biopsies were used to determine adipocyte cell size and aromatase expression by real-time PCR. Total and free T levels were decreased in obese males versus controls, with a further decrease in obese men with DM2 versus obese men without DM2. There were no differences in aromatase expression among the study groups, and sex steroids did not correlate with aromatase expression. Pearson analysis revealed an inverse association between (free) T and SAT cell size, triglycerides, and HOMA-IR. Multivariate analysis confirmed the inverse association between (free) T and SAT cell size (β = −0.321, P = 0.037 and β = −0.441, P = 0.011, respectively), independent of age, triglycerides, HOMA-IR, obesity, or diabetes. T levels were normalized 2 years after GBS. These data suggest that SAT cell size rather than SAT aromatase expression or parameters of the hypothalamic–pituitary–gonadal axis is related to low T in male obesity, which points to adipose cell size-related metabolic changes as a major trigger in decreased T levels
    corecore