17 research outputs found

    Traditional Chinese medicine Zhusha Anshen Wan: protective effects on liver, kidney, and intestine of the individual drugs using 1H NMR metabolomics

    Get PDF
    Introduction: Zhusha Anshen Wan (ZSASW) is a traditional Chinese medicine compound mainly composed of mineral drugs. In clinical practice, ZSASW did not show the toxicity of administering equal doses of cinnabar alone, suggesting that the four combination herbs in ZSASW can alleviate the damage of cinnabar. The effect of each herb on reducing the toxicity of cinnabar has not been fully explained.Methods: In our study, we utilized a metabonomics approach based on high-resolution 1H nuclear magnetic resonance spectroscopy to investigate the reduction of toxicity by each herb in ZSASW. Liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum were also performed.Results: Partial least squares-discriminant analysis (PLS-DA) was conducted to distinct different metabolic profiles in the urine and serum from the rats. Liver and kidney histopathology examinations, as well as analysis of serum clinical chemistry analysis, were also carried out. The metabolic profiles of the urine and serum of the rats in the CGU (treated with cinnabar and Glycyrrhiza uralensis Fisch) and CCC (treated with cinnabar and Coptis chinensis French) groups were remarkably similar to those of the control group, while those of the CRG (treated with cinnabar and Rehmannia glutinosa Libosch) and CAS (treated with cinnabar and Angelica sinensis) groups were close to those of the cinnabar group. The metabolic profiles of the urine and serum of the rats in the CGU and CCC groups were remarkably similar to those of the control group, while those of the CRG and CAS groups were close to those of the cinnabar group. Changes in endogenous metabolites associated with toxicity were identified. Rehmannia glutinosa, Rhizoma Coptidis and Glycyrrhiza uralensis Fisch could maintain the dynamic balance of the intestinal flora. These results were also verified by liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum. The results suggested thatDiscussion: The metabolic mechanism of single drug detoxification in compound prescriptions has been elucidated. Coptis chinensis and Glycyrrhiza uralensis serve as the primary detoxification agents within ZSASW for mitigating liver, kidney, and intestinal damage caused by cinnabar. Detoxification can be observed through changes in the levels of various endogenous metabolites and related metabolic pathways

    Experimental Study of Broadcatching in BitTorrent

    Get PDF
    Abstract—Broadcatching is a promising mechanism to improve the experience of BitTorrent users by automatically downloading files advertised through RSS feeds. However, though widely used, the mechanism itself has not been well studied. In this paper, we conducted extensive experiments on PlanetLab to evaluate the performance of Broadcatching under different typical scenarios. The results demonstrated the effectiveness of the Broadcatching: it reduces the average completion time and downloading failure ratio. It also improves the overall fairness of the system: the subscribers are encouraged to share more while downloading faster, which results in the increased share ratio. Our study is the first work to systematically evaluate the benefit of Broadcatching and sheds lights on how to improve performance of BitTorrrent by manipulating peer’s behavior like Broadcatching. I

    Identification of the risk for liver fibrosis on CHB patients using an artificial neural network based on routine and serum markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Liver fibrosis progression is commonly found in patients with CHB. Liver biopsy is a gold standard for identifying the extent of liver fibrosis, but has many draw-backs. It is essential to construct a noninvasive model to predict the levels of risk for liver fibrosis. It would provide very useful information to help reduce the number of liver biopsies of CHB patients.</p> <p>Methods</p> <p>339 chronic hepatitis B patients with HBsAg-positive were investigated retrospectively, and divided at random into 2 subsets with twice as many patients in the training set as in the validation set; 116 additional patients were consequently enrolled in the study as the testing set. A three-layer artificial neural network was developed using a Bayesian learning algorithm. Sensitivity and ROC analysis were performed to explain the importance of input variables and the performance of the neural network.</p> <p>Results</p> <p>There were 329 patients without significant fibrosis and 126 with significant fibrosis in the study. All markers except gender, HB, ALP and TP were found to be statistically significant factors associated with significant fibrosis. The sensitivity analysis showed that the most important factors in the predictive model were age, AST, platelet, and GGT, and the influence on the output variable among coal miners were 22.3-24.6%. The AUROC in 3 sets was 0.883, 0.884, and 0.920. In the testing set, for a decision threshold of 0.33, sensitivity and negative predictive values were 100% and all CHB patients with significant fibrosis would be identified.</p> <p>Conclusions</p> <p>The artificial neural network model based on routine and serum markers would predict the risk for liver fibrosis with a high accuracy. 47.4% of CHB patients at a decision threshold of 0.33 would be free of liver biopsy and wouldn't be missed.</p

    DataSheet4_Traditional Chinese medicine Zhusha Anshen Wan: protective effects on liver, kidney, and intestine of the individual drugs using 1H NMR metabolomics.xls

    No full text
    Introduction: Zhusha Anshen Wan (ZSASW) is a traditional Chinese medicine compound mainly composed of mineral drugs. In clinical practice, ZSASW did not show the toxicity of administering equal doses of cinnabar alone, suggesting that the four combination herbs in ZSASW can alleviate the damage of cinnabar. The effect of each herb on reducing the toxicity of cinnabar has not been fully explained.Methods: In our study, we utilized a metabonomics approach based on high-resolution 1H nuclear magnetic resonance spectroscopy to investigate the reduction of toxicity by each herb in ZSASW. Liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum were also performed.Results: Partial least squares-discriminant analysis (PLS-DA) was conducted to distinct different metabolic profiles in the urine and serum from the rats. Liver and kidney histopathology examinations, as well as analysis of serum clinical chemistry analysis, were also carried out. The metabolic profiles of the urine and serum of the rats in the CGU (treated with cinnabar and Glycyrrhiza uralensis Fisch) and CCC (treated with cinnabar and Coptis chinensis French) groups were remarkably similar to those of the control group, while those of the CRG (treated with cinnabar and Rehmannia glutinosa Libosch) and CAS (treated with cinnabar and Angelica sinensis) groups were close to those of the cinnabar group. The metabolic profiles of the urine and serum of the rats in the CGU and CCC groups were remarkably similar to those of the control group, while those of the CRG and CAS groups were close to those of the cinnabar group. Changes in endogenous metabolites associated with toxicity were identified. Rehmannia glutinosa, Rhizoma Coptidis and Glycyrrhiza uralensis Fisch could maintain the dynamic balance of the intestinal flora. These results were also verified by liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum. The results suggested thatDiscussion: The metabolic mechanism of single drug detoxification in compound prescriptions has been elucidated. Coptis chinensis and Glycyrrhiza uralensis serve as the primary detoxification agents within ZSASW for mitigating liver, kidney, and intestinal damage caused by cinnabar. Detoxification can be observed through changes in the levels of various endogenous metabolites and related metabolic pathways.</p

    The Effect of Sodium Gluconate on Pastes’ Performance and Hydration Behavior of Ordinary Portland Cement

    No full text
    The goal of this paper provides better understanding of the effect of sodium gluconate (SG) on ordinary Portland cement (OPC) hydration behavior. Pastes’ performances of ordinary Portland cement, including setting time at 20°C and 35°C curing temperature, mechanical strength, fluidity, and zeta potential are studied. Furthermore, the effects of SG on cement hydration behaviors are investigated by the means of isothermal calorimetry measurements, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results show that SG is difficult to maintain significant retarding effect at the temperature of 35°C compared to that at the temperature of 20°C. SG is able to reduce the cement cumulative hydration heat and delay the occurrence time of heat evolution peak in a certain extent, but it has little impact on reducing the cement evolution rate peak. The effects of SG on mechanical properties and dispersion properties of cement depend on its dosages. Specifically, the positive effect occurs when the addition dosage is less than 0.15% (i.e., by cement weight), but the negative effect emerges if the addition dosages exceed this limitation. Similarly, SG plays different roles on cement hydration at different hydration periods. It inhibits the hydration of C3S and the formation of portlandite (CH) at the early hydration period. On the contrary, it promotes the C3S hydration when hydration time is beyond 1 d. Meanwhile, SG also plays different roles on cement hydration at different dosage additions. Specifically, SG promotes ettringite (AFt) formation at the dosage less than 0.06%, but it inhibits AFt formation at the dosage more than 0.06%

    DataSheet2_Traditional Chinese medicine Zhusha Anshen Wan: protective effects on liver, kidney, and intestine of the individual drugs using 1H NMR metabolomics.xls

    No full text
    Introduction: Zhusha Anshen Wan (ZSASW) is a traditional Chinese medicine compound mainly composed of mineral drugs. In clinical practice, ZSASW did not show the toxicity of administering equal doses of cinnabar alone, suggesting that the four combination herbs in ZSASW can alleviate the damage of cinnabar. The effect of each herb on reducing the toxicity of cinnabar has not been fully explained.Methods: In our study, we utilized a metabonomics approach based on high-resolution 1H nuclear magnetic resonance spectroscopy to investigate the reduction of toxicity by each herb in ZSASW. Liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum were also performed.Results: Partial least squares-discriminant analysis (PLS-DA) was conducted to distinct different metabolic profiles in the urine and serum from the rats. Liver and kidney histopathology examinations, as well as analysis of serum clinical chemistry analysis, were also carried out. The metabolic profiles of the urine and serum of the rats in the CGU (treated with cinnabar and Glycyrrhiza uralensis Fisch) and CCC (treated with cinnabar and Coptis chinensis French) groups were remarkably similar to those of the control group, while those of the CRG (treated with cinnabar and Rehmannia glutinosa Libosch) and CAS (treated with cinnabar and Angelica sinensis) groups were close to those of the cinnabar group. The metabolic profiles of the urine and serum of the rats in the CGU and CCC groups were remarkably similar to those of the control group, while those of the CRG and CAS groups were close to those of the cinnabar group. Changes in endogenous metabolites associated with toxicity were identified. Rehmannia glutinosa, Rhizoma Coptidis and Glycyrrhiza uralensis Fisch could maintain the dynamic balance of the intestinal flora. These results were also verified by liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum. The results suggested thatDiscussion: The metabolic mechanism of single drug detoxification in compound prescriptions has been elucidated. Coptis chinensis and Glycyrrhiza uralensis serve as the primary detoxification agents within ZSASW for mitigating liver, kidney, and intestinal damage caused by cinnabar. Detoxification can be observed through changes in the levels of various endogenous metabolites and related metabolic pathways.</p

    DataSheet5_Traditional Chinese medicine Zhusha Anshen Wan: protective effects on liver, kidney, and intestine of the individual drugs using 1H NMR metabolomics.xls

    No full text
    Introduction: Zhusha Anshen Wan (ZSASW) is a traditional Chinese medicine compound mainly composed of mineral drugs. In clinical practice, ZSASW did not show the toxicity of administering equal doses of cinnabar alone, suggesting that the four combination herbs in ZSASW can alleviate the damage of cinnabar. The effect of each herb on reducing the toxicity of cinnabar has not been fully explained.Methods: In our study, we utilized a metabonomics approach based on high-resolution 1H nuclear magnetic resonance spectroscopy to investigate the reduction of toxicity by each herb in ZSASW. Liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum were also performed.Results: Partial least squares-discriminant analysis (PLS-DA) was conducted to distinct different metabolic profiles in the urine and serum from the rats. Liver and kidney histopathology examinations, as well as analysis of serum clinical chemistry analysis, were also carried out. The metabolic profiles of the urine and serum of the rats in the CGU (treated with cinnabar and Glycyrrhiza uralensis Fisch) and CCC (treated with cinnabar and Coptis chinensis French) groups were remarkably similar to those of the control group, while those of the CRG (treated with cinnabar and Rehmannia glutinosa Libosch) and CAS (treated with cinnabar and Angelica sinensis) groups were close to those of the cinnabar group. The metabolic profiles of the urine and serum of the rats in the CGU and CCC groups were remarkably similar to those of the control group, while those of the CRG and CAS groups were close to those of the cinnabar group. Changes in endogenous metabolites associated with toxicity were identified. Rehmannia glutinosa, Rhizoma Coptidis and Glycyrrhiza uralensis Fisch could maintain the dynamic balance of the intestinal flora. These results were also verified by liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum. The results suggested thatDiscussion: The metabolic mechanism of single drug detoxification in compound prescriptions has been elucidated. Coptis chinensis and Glycyrrhiza uralensis serve as the primary detoxification agents within ZSASW for mitigating liver, kidney, and intestinal damage caused by cinnabar. Detoxification can be observed through changes in the levels of various endogenous metabolites and related metabolic pathways.</p

    DataSheet3_Traditional Chinese medicine Zhusha Anshen Wan: protective effects on liver, kidney, and intestine of the individual drugs using 1H NMR metabolomics.xls

    No full text
    Introduction: Zhusha Anshen Wan (ZSASW) is a traditional Chinese medicine compound mainly composed of mineral drugs. In clinical practice, ZSASW did not show the toxicity of administering equal doses of cinnabar alone, suggesting that the four combination herbs in ZSASW can alleviate the damage of cinnabar. The effect of each herb on reducing the toxicity of cinnabar has not been fully explained.Methods: In our study, we utilized a metabonomics approach based on high-resolution 1H nuclear magnetic resonance spectroscopy to investigate the reduction of toxicity by each herb in ZSASW. Liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum were also performed.Results: Partial least squares-discriminant analysis (PLS-DA) was conducted to distinct different metabolic profiles in the urine and serum from the rats. Liver and kidney histopathology examinations, as well as analysis of serum clinical chemistry analysis, were also carried out. The metabolic profiles of the urine and serum of the rats in the CGU (treated with cinnabar and Glycyrrhiza uralensis Fisch) and CCC (treated with cinnabar and Coptis chinensis French) groups were remarkably similar to those of the control group, while those of the CRG (treated with cinnabar and Rehmannia glutinosa Libosch) and CAS (treated with cinnabar and Angelica sinensis) groups were close to those of the cinnabar group. The metabolic profiles of the urine and serum of the rats in the CGU and CCC groups were remarkably similar to those of the control group, while those of the CRG and CAS groups were close to those of the cinnabar group. Changes in endogenous metabolites associated with toxicity were identified. Rehmannia glutinosa, Rhizoma Coptidis and Glycyrrhiza uralensis Fisch could maintain the dynamic balance of the intestinal flora. These results were also verified by liver, kidney and intestinal histopathology examinations and biochemical analysis of the serum. The results suggested thatDiscussion: The metabolic mechanism of single drug detoxification in compound prescriptions has been elucidated. Coptis chinensis and Glycyrrhiza uralensis serve as the primary detoxification agents within ZSASW for mitigating liver, kidney, and intestinal damage caused by cinnabar. Detoxification can be observed through changes in the levels of various endogenous metabolites and related metabolic pathways.</p
    corecore