4 research outputs found

    Invariante Natürliche Killer T Zellen besitzen immunmodulierende Funktionen in der AspergillusAspergillus fumigatusfumigatus Abwehr

    No full text
    Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant Natural Killer T (iNKT) cells compose a small subset of T cells known to impact the immune response towards various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d⁺ antigen presenting cells using flow cytometry and multiplex ELISA. Among CD1d⁺ subpopulations, CD1d⁺CD1c⁺ mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d⁺CD1c⁺ mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection.Aspergillus fumigatus ist der häufigste Erreger von invasiven Pilzinfektionen, welche bei immunsupprimierten Patienten mit einer hohen Mortalität einhergehen. CD1d-abhängige invariante Natürliche Killer T (iNKT) Zellen sind eine kleine Subpopulation von T-Zellen, die die Immunantwort auf verschiedene Erreger beeinflussen. Um die Rolle von humanen iNKT Zellen in der Aspergillus fumigatus Abwehr zu untersuchen, wurde in Ko-Kulturen mit iNKT Zellen und CD1d⁺ Antigen präsentierenden Zellen in Anwesenheit von verschiedenen fungalen Morphotypen der Aktivierungsmarker CD69 und die Zytokinproduktion mittels Durchflusszytometrie und Multiplex ELISA untersucht. Unter den CD1d⁺ Subpopulationen wiesen die CD1d⁺CD1c⁺mDCs das höchste aktivierende Potential auf iNKT Zellen auf. Die Anwesenheit von A. fumigatus reduzierte diesen Effekt von CD1d⁺CD1c⁺mDCs auf iNKT Zellen und führte zu einer reduzierten Sekretion von TNF-α, G-CSF und RANTES. Die Produktion von anderen Th1 und Th2 Zytokinen war nicht durch den Pilz beeinflusst. Diese Arbeit suggeriert eine immunmodulierende Funktion von humanen iNKT Zellen in der Abwehr von A. fumigatus

    Loss of CD22 expression and expansion of a CD22dim subpopulation in adults with relapsed/refractory B-lymphoblastic leukaemia after treatment with Inotuzumab-Ozogamicin

    No full text
    Treatment options for relapsed or refractory B-lymphoblastic leukaemia (r/r B-ALL) are limited and the prognosis of these patients remains dismal, but novel immunotherapeutic options such as the anti-CD22 antibody-drug-conjugate Inotuzumab-Ozogamicin (InO) have improved outcomes in these patients. Flow cytometry is essential to assess antigen-expression prior to treatment initiation of antigen-directed immunotherapies. Here, we present flow cytometric and clinical data of three adult patients with r/r B-ALL who failed treatment with InO associated with reduced or lost antigen-expression. In addition, we present comparative data on two different diagnostic CD22-specific antibody clones that exhibit significant differences in staining intensities

    Acute impact of an endurance race on biventricular and biatrial myocardial strain in competitive male and female triathletes evaluated by feature-tracking CMR

    No full text
    Objectives!#!Cardiac adaptation in endurance athletes is a well-known phenomenon, but the acute impact of strenuous exercise is rarely reported on. The aim of this study was to analyze the alterations in biventricular and biatrial function in triathletes after an endurance race using novel feature-tracking cardiac magnetic resonance (FT-CMR).!##!Methods!#!Fifty consecutive triathletes (45 ± 10 years; 80% men) and twenty-eight controls were prospectively recruited, and underwent 1.5-T CMR. Biventricular and biatrial volumes, left ventricular ejection fraction (LVEF), FT-CMR analysis, and late gadolinium imaging (LGE) were performed. Global systolic longitudinal (GLS), circumferential (GCS), and radial strain (GRS) were assessed. CMR was performed at baseline and following an endurance race. High-sensitive troponin T and NT-proBNP were determined. The time interval between race completion and CMR was 2.3 ± 1.1 h (range 1-5 h).!##!Results!#!Post-race troponin T (p < 0.0001) and NT-proBNP (p < 0.0001) were elevated. LVEF remained constant (62 ± 6 vs. 63 ± 7%, p = 0.607). Post-race LV GLS decreased by tendency (- 18 ± 2 vs. - 17 ± 2%, p = 0.054), whereas GCS (- 16 ± 4 vs. - 18 ± 4%, p < 0.05) and GRS increased (39 ± 11 vs. 44 ± 11%, p < 0.01). Post-race right ventricular GLS (- 19 ± 3 vs. - 19 ± 3%, p = 0.668) remained constant and GCS increased (- 7 ± 2 vs. - 8 ± 3%, p < 0.001). Post-race left atrial GLS (30 ± 8 vs. 24 ± 6%, p < 0.0001) decreased while right atrial GLS remained constant (25 ± 6 vs. 24 ± 6%, p = 0.519).!##!Conclusions!#!The different alterations of post-race biventricular and biatrial strain might constitute an intrinsic compensatory mechanism following an acute bout of endurance exercise. The combined use of strain parameters may allow a better characterization of ventricular and atrial function in endurance athletes.!##!Key points!#!• Triathletes demonstrate a decrease of LV global longitudinal strain by tendency and constant RV global longitudinal strain following an endurance race. • Post-race LV and RV global circumferential and radial strains increase, possibly indicating a compensatory mechanism after an acute endurance exercise bout. • Subgroup analyses of male triathletes with focal myocardial fibrosis did not demonstrate alterations in biventricular and biatrial strain after an endurance race

    Myocardial injury detected by T1 and T2 mapping on CMR predicts subsequent cancer therapy–related cardiac dysfunction in patients with breast cancer treated by epirubicin-based chemotherapy or left-sided RT

    No full text
    Objectives!#!Cancer therapy-related cardiac dysfunction (CTRCD) is a relevant clinical problem and needs early prediction. This study aimed to analyze myocardial injury using serial laboratory and cardiac magnetic resonance imaging (CMR) parameters after epirubicin-based chemotherapy compared with left-sided radiotherapy and to study their value for early prediction of CTRCD.!##!Methods!#!Sixty-six consecutive women (53 ± 13 years) including n = 39 with epirubicin-based chemotherapy and n = 27 with left-sided radiotherapy were prospectively studied by 3 T CMR including left ventricular (LV) mass and volumes for ejection fraction (LVEF), as well as feature-tracking with global longitudinal strain (GLS) and T1/T2 mapping. CMR was performed at baseline, at therapy completion (follow-up 1, FU1), and after 13 ± 2 months (FU2). CTRCD was defined as LVEF decline of at least 10% to < 55% or a > 15% GLS change at FU2.!##!Results!#!T1 and T2 increased at FU1 after epirubicin-based chemotherapy, but not after left-sided radiotherapy. CTRCD occurred in 20% of patients after epirubicin-based chemotherapy and in 4% after left-sided radiotherapy. T1 at FU1 was the best single parameter to predict CTRCD with an area under the curve (AUC) of 0.712 (CI 0.587-0.816, p = 0.005) with excellent sensitivity (100%, 66-100%), but low specificity (44%, 31-58%). Combined use of increased T1 and LVEF ≤ 60% at FU1 improved AUC to 0.810 (0.695-0.896) resulting in good sensitivity (78%, 44-95%) and specificity (84%, 72-92%).!##!Conclusion!#!Only epirubicin-based chemotherapy, but not left-sided radiotherapy, resulted in increased T1/T2 myocardial relaxation times as a marker of myocardial injury. Combined use of CMR parameters may allow an early prediction of subsequent CTCRD.!##!Key points!#!• Myocardial T1 and T2 relaxation times increased at FU1 after epirubicin-based chemotherapy, but not after left-sided radiotherapy. • Cancer therapy-related cardiac dysfunction (CTRCD) occurred in 20% of patients after epirubicin-based chemotherapy and in 4% after left-sided radiotherapy. • Combined use of increased T1 and reduced LVEF had an AUC of 0.810 (0.695-0.896) to predict CTRCD with good sensitivity (78%, 44-95%) and specificity (84%, 72-92%)
    corecore