22 research outputs found

    Beneficial Fitness Effects Are Not Exponential for Two Viruses

    Get PDF
    The distribution of fitness effects for beneficial mutations is of paramount importance in determining the outcome of adaptation. It is generally assumed that fitness effects of beneficial mutations follow an exponential distribution, for example, in theoretical treatments of quantitative genetics, clonal interference, experimental evolution, and the adaptation of DNA sequences. This assumption has been justified by the statistical theory of extreme values, because the fitnesses conferred by beneficial mutations should represent samples from the extreme right tail of the fitness distribution. Yet in extreme value theory, there are three different limiting forms for right tails of distributions, and the exponential describes only those of distributions in the Gumbel domain of attraction. Using beneficial mutations from two viruses, we show for the first time that the Gumbel domain can be rejected in favor of a distribution with a right-truncated tail, thus providing evidence for an upper bound on fitness effects. Our data also violate the common assumption that small-effect beneficial mutations greatly outnumber those of large effect, as they are consistent with a uniform distribution of beneficial effects

    The Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa

    Get PDF
    Understanding how beneficial mutations affect fitness is crucial to our understanding of adaptation by natural selection. Here, using adaptation to the antibiotic rifampicin in the opportunistic pathogen Pseudomonas aeruginosa as a model system, we investigate the underlying distribution of fitness effects of beneficial mutations on which natural selection acts. Consistent with theory, the effects of beneficial mutations are exponentially distributed where the fitness of the wild type is moderate to high. However, when the fitness of the wild type is low, the data no longer follow an exponential distribution, because many beneficial mutations have large effects on fitness. There is no existing population genetic theory to explain this bias towards mutations of large effects, but it can be readily explained by the underlying biochemistry of rifampicin–RNA polymerase interactions. These results demonstrate the limitations of current population genetic theory for predicting adaptation to severe sources of stress, such as antibiotics, and they highlight the utility of integrating statistical and biophysical approaches to adaptation

    Epistasis between beneficial mutations and the phenotype-to-fitness Map for a ssDNA virus.

    Get PDF
    Epistatic interactions between genes and individual mutations are major determinants of the evolutionary properties of genetic systems and have therefore been well documented, but few quantitative data exist on epistatic interactions between beneficial mutations, presumably because such mutations are so much rarer than deleterious ones. We explored epistasis for beneficial mutations by constructing genotypes with pairs of mutations that had been previously identified as beneficial to the ssDNA bacteriophage ID11 and by measuring the effects of these mutations alone and in combination. We constructed 18 of the 36 possible double mutants for the nine available beneficial mutations. We found that epistatic interactions between beneficial mutations were all antagonistic-the effects of the double mutations were less than the sums of the effects of their component single mutations. We found a number of cases of decompensatory interactions, an extreme form of antagonistic epistasis in which the second mutation is actually deleterious in the presence of the first. In the vast majority of cases, recombination uniting two beneficial mutations into the same genome would not be favored by selection, as the recombinant could not outcompete its constituent single mutations. In an attempt to understand these results, we developed a simple model in which the phenotypic effects of mutations are completely additive and epistatic interactions arise as a result of the form of the phenotype-to-fitness mapping. We found that a model with an intermediate phenotypic optimum and additive phenotypic effects provided a good explanation for our data and the observed patterns of epistatic interactions

    A General Extreme Value Theory Model for the Adaptation of DNA Sequences Under Strong Selection and Weak Mutation

    No full text
    Recent theoretical studies of the adaptation of DNA sequences assume that the distribution of fitness effects among new beneficial mutations is exponential. This has been justified by using extreme value theory and, in particular, by assuming that the distribution of fitnesses belongs to the Gumbel domain of attraction. However, extreme value theory shows that two other domains of attraction are also possible: the Fréchet and Weibull domains. Distributions in the Fréchet domain have right tails that are heavier than exponential, while distributions in the Weibull domain have right tails that are truncated. To explore the consequences of relaxing the Gumbel assumption, we generalize previous adaptation theory to allow all three domains. We find that many of the previously derived Gumbel-based predictions about the first step of adaptation are fairly robust for some moderate forms of right tails in the Weibull and Fréchet domains, but significant departures are possible, especially for predictions concerning multiple steps in adaptation

    Testing the Extreme Value Domain of Attraction for Distributions of Beneficial Fitness Effects

    No full text
    In modeling evolutionary genetics, it is often assumed that mutational effects are assigned according to a continuous probability distribution, and multiple distributions have been used with varying degrees of justification. For mutations with beneficial effects, the distribution currently favored is the exponential distribution, in part because it can be justified in terms of extreme value theory, since beneficial mutations should have fitnesses in the extreme right tail of the fitness distribution. While the appeal to extreme value theory seems justified, the exponential distribution is but one of three possible limiting forms for tail distributions, with the other two loosely corresponding to distributions with right-truncated tails and those with heavy tails. We describe a likelihood-ratio framework for analyzing the fitness effects of beneficial mutations, focusing on testing the null hypothesis that the distribution is exponential. We also describe how to account for missing the smallest-effect mutations, which are often difficult to identify experimentally. This technique makes it possible to apply the test to gain-of-function mutations, where the ancestral genotype is unable to grow under the selective conditions. We also describe how to pool data across experiments, since we expect few possible beneficial mutations in any particular experiment

    Evidence for decompensatory epistasis.

    No full text
    <p>The grid shows the fitnesses of the wild type, single mutants, and double mutants. Empty cells represent the double mutants that were not constructed. Red indicates that the average fitness of the double mutant is lower than the average fitness conferred by its two constituent single mutations. Blue indicates that its fitness is higher than that of either single mutant, and purple indicates that it is between the fitnesses of the two single mutants. A “*” in a red box indicates the double mutation confers a fitness significantly lower than that conferred by one single mutation, and a “**” indicates that the double mutation confers a fitness significantly lower than that conferred by either of its single mutations. A “*” in a blue box indicates that the double mutation confers a fitness significantly higher than that conferred by either constituent single mutation.</p

    The phenotype-to-fitness map.

    No full text
    <p>The plot shows the fit of our model for the phenotype-to-fitness map. The model assumes a gamma curve for the relationship between fitness and phenotype. Phenotypic effects were assumed to be additive and epistasis for fitness to arise through the shape of the curve. The variance of the normal error was estimated to be . gives the coefficient of determination. The value is based on an test comparing our model to a model assuming that single- and double-mutant fitnesses are independent of each other. For these data, . We rescaled fitness by substracting rather than the fitness of the wild type to avoid negative values.</p

    Universal antagonistic epistasis for beneficial mutations.

    No full text
    <p>The fitness of double mutant ID11 phage expected on the basis of addition of the effects of the two mutations is plotted against the observed effects on the doubles mutants. Additive effects would fall on the diagonal, synergistic effects would fall above the diagonal, and antagonistic effects would fall below the diagonal. Effects are given in units of doublings per hour.</p

    Beneficial Fitness Effects Are Not Exponential for Two Viruses

    No full text
    Abstract The distribution of fitness effects for beneficial mutations is of paramount importance in determining the outcome of adaptation. It is generally assumed that fitness effects of beneficial mutations follow an exponential distribution, for example, in theoretical treatments of quantitative genetics, clonal interference, experimental evolution, and the adaptation of DNA sequences. This assumption has been justified by the statistical theory of extreme values, because the fitnesses conferred by beneficial mutations should represent samples from the extreme right tail of the fitness distribution. Yet in extreme value theory, there are three different limiting forms for right tails of distributions, and the exponential describes only those of distributions in the Gumbel domain of attraction. Using beneficial mutations from two viruses, we show for the first time that the Gumbel domain can be rejected in favor of a distribution with a right-truncated tail, thus providing evidence for an upper bound on fitness effects. Our data also violate the common assumption that smalleffect beneficial mutations greatly outnumber those of large effect, as they are consistent with a uniform distribution of beneficial effects
    corecore