2 research outputs found

    Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life

    Get PDF
    Objective Leukocyte telomere length (LTL) is one of the markers of biological aging as shortening occurs over time. Shorter LTL has been associated with adiposity and a higher risk of cardiovascular diseases. The objective was to assess LTL and LTL shortening during the first 2 years of life in healthy, term-born infants and to associate LTL shortening with potential stressors and body composition. Study design In 145 healthy, term-born infants (85 boys), we measured LTL in blood, expressed as telomere to single-gene copy ratio (T/S ratio), at 3 months and 2 years by quantitative PCR technique. Fat mass (FM) was assessed longitudinally by PEAPOD, DXA, and abdominal FM by ultrasound. Results LTL decreased by 8.5% from 3 months to 2 years (T/S ratio 4.10 vs 3.75, p<0.001). LTL shortening from 3 months to 2 years associated with FM%(R = 0.254), FM index(R = 0.243) and visceral FM(R = 0.287) at 2 years. LTL shortening tended to associate with gain in FM% from 3 to 6 months (R = 0.155, p = 0.11), in the critical window for adiposity programming. There was a trend to a shorter LTL in boys at 2 years(p = 0.056). LTL shortening from 3 months to 2 years was not different between sexes. Conclusion We present longitudinal LTL values and show that LTL shortens considerably (8.5%) during the first 2 years of life. LTL shortening during first 2 years of life was associated with FM%, FMI and visceral FM at age 2 years, suggesting that adverse adiposity programming in early life could contribute to more LTL shortening

    Appetite-regulating hormone trajectories and relationships with fat mass development in term-born infants during the first 6 months of life

    No full text
    Background: The first 6 months of life are a critical window for adiposity programming. Appetite-regulating hormones (ARH) are involved in food intake regulation and might, therefore, play a role in adiposity programming. Studies examining ARH in early life are limited. Purpose: To investigate ghrelin, peptide YY (PYY) and leptin until 6 months and associations with fat mass percentage (FM%), infant feeding and human milk macronutrients. Procedures: In 297 term-born infants (Sophia Pluto Cohort), ghrelin (acylated), PYY and leptin were determined at 3 and 6 months, with FM% measurement by PEAPOD. Exclusive breastfeeding (BF) was classified as BF ≥ 3 months. Human milk macronutrients were analyzed (MIRIS Human Milk Analyzer). Main findings: Ghrelin increased from 3 to 6 months (p &lt; 0.001), while PYY decreased (p &lt; 0.001), resulting in increasing ghrelin/PYY ratio. Leptin decreased. Leptin at 3 months was higher in girls, other ARH were similar between sexes. Leptin at 3 and 6 months correlated with FM% at both ages(R ≥ 0.321, p ≤ 0.001) and gain in FM% from 1 to 6 months(R ≥ 0.204, p = 0.001). In BF infants, also ghrelin and ghrelin/PYY ratio correlated with this gain in FM%. Exclusively BF infants had lower ghrelin and higher PYY compared to formula fed infants at 3 months (p ≤ 0.039). ARH did not correlate with macronutrients. Conclusions: Increasing ghrelin and decreasing PYY, thus increasing ghrelin/PYY ratio, suggests an increasing orexigenic drive until 6 months. ARH were different between BF and FF infants at 3 months, but did not correlate with human milk macronutrients. Ghrelin and leptin, but not PYY, correlated with more FM development during the first 6 months, suggesting that they might be involved in adiposity programming.</p
    corecore