317 research outputs found

    Ion‐assisted Si/XeF 2

    Full text link

    Silicon etch rate enhancement by traces of metal

    Get PDF
    We report the effect of nickel and tungsten contamination on the etch behavior of silicon. This is studied in a molecular beam setup, where silicon is etched by XeF2 and Ar+ ions. The etch process is directly monitored by the SiF4 reaction products which leave the surface. The effect of contamination appears very pronounced after the ion beam is switched off: it leads to a temporary enhancement of the spontaneous etch rate on a time scale of 500 s. With traces of contamination on the order of 0.01 ML, the etch rate may be enhanced by a factor of 2 for W and somewhat less for Ni. It is concluded that the contamination moves into the silicon by diffusion to vacancies created by the Ar+ ions. For 1 keV Ar+ ions the contamination moves to a depth of 25 Å, comparable to the penetration depth of the ions. After etching a 170 Å thick layer, the catalytic effect of contamination is reduced to less than 5%. A simple model, which describes the measured effect of contamination very well, indicates that only 3% of the contamination is removed when a monolayer of silicon is etched away. Besides this catalytic effect there are indications that contamination can also lower the etch rate under certain conditions, because of the formation of silicides. From the measurements no conclusions could be drawn about the underlying mechanism of etch rate enhancement. © 1999 American Vacuum Society

    All-Optical Production of a Degenerate Fermi Gas

    Full text link
    We achieve degeneracy in a mixture of the two lowest hyperfine states of 6^6Li by direct evaporation in a CO2_2 laser trap, yielding the first all-optically produced degenerate Fermi gas. More than 10510^5 atoms are confined at temperatures below 4Ό4 \muK at full trap depth, where the Fermi temperature for each state is 8Ό8 \muK. This degenerate two-component mixture is ideal for exploring mechanisms of superconductivity ranging from Cooper pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let

    Limit on suppression of ionization in metastable neon traps due to long-range anisotropy

    Get PDF
    This paper investigates the possibility of suppressing the ionization rate in a magnetostatic trap of metastable neon atoms by spin-polarizing the atoms. Suppression of the ionization is critical for the possibility of reaching Bose-Einstein condensation with such atoms. We estimate the relevant long-range interactions for the system, consisting of electric quadrupole-quadrupole and dipole-induced dipole terms, and develop short-range potentials based on the Na_2 singlet and triplet potentials. The auto-ionization widths of the system are also calculated. With these ingredients we calculate the ionization rate for spin-polarized and for spin-isotropic samples, caused by anisotropy of the long-range interactions. We find that spin-polarization may allow for four orders of magnitude suppression of the ionization rate for Ne. The results depend sensitively on a precise knowledge of the interaction potentials, however, pointing out the need for experimental input. The same model gives a suppression ratio close to unity for metastable xenon in accordance with experimental results, due to a much increased anisotropy in this case.Comment: 15 pages including figures, LaTex/RevTex, uses epsfig.st

    Metastable neon collisions: anisotropy and scattering length

    Get PDF
    In this paper we investigate the effective scattering length aa of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of aa as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of aa is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that the induced dipole-dipole interaction is responsible for coupling between the different |\Omega> states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling towards the Bose-Einstein Condensation transition, greatly enhancing the feasibility to reach this transition.Comment: 13pages, 8 eps figures, analytical model in section V has been remove
    • 

    corecore