576 research outputs found

    Novel Precursors for Boron Nanotubes: The Competition of Two-Center and Three-Center Bonding in Boron Sheets

    Full text link
    We present a new class of boron sheets, composed of triangular and hexagonal motifs, that are more stable than structures considered to date and thus are likely to be the precursors of boron nanotubes. We describe a simple and clear picture of electronic bonding in boron sheets and highlight the importance of three-center bonding and its competition with two-center bonding, which can also explain the stability of recently discovered boron fullerenes. Our findings call for reconsideration of the literature on boron sheets, nanotubes, and clusters.Comment: 4 pages, 4 figures, 1 tabl

    Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions

    Get PDF
    Key contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly

    Clifford Gates by Code Deformation

    Full text link
    Topological subsystem color codes add to the advantages of topological codes an important feature: error tracking only involves measuring 2-local operators in a two dimensional setting. Unfortunately, known methods to compute with them were highly unpractical. We give a mechanism to implement all Clifford gates by code deformation in a planar setting. In particular, we use twist braiding and express its effects in terms of certain colored Majorana operators.Comment: Extended version with more detail

    Intravenous Pamidronate for Refractory Lymphedema

    Get PDF
    Background: Based on beneficial reports of pamidronate use for reflex sympathetic dystrophy in reduction of pain and swelling, this drug can be studied as a novel treatment for refractory lymphedema. This study aims to determine the effectiveness of pamidronate on lymphedema and its possible side effects. Methods: Twelve cases of lower limb refractory lymphedema were enrolled. They received intravenous pamidronate monthly for 3 consecutive months and were followed by measuring any discomfort with visual analog scale (VAS) and physician global assessment, based on objective signs of limb volume and circumference. Results: The limb volume, circumference, and satisfaction of the patients improved significantly. Conclusion: Pamidronate when is added to conservative treatments may reduce lymphedema and improve the patient's comfort. © Iranian Red Crescent Medical Journal

    Vibrational properties of amorphous silicon from tight-binding O(N) calculation

    Full text link
    We present an O(N) algorithm to study the vibrational properties of amorphous silicon within the framework of tight-binding approach. The dynamical matrix elements have been evaluated numerically in the harmonic approximation exploiting the short-range nature of the density matrix to calculate the vibrational density of states which is then compared with the same obtained from a standard O(N4N^4) algorithm. For the purpose of illustration, an 1000-atom model is studied to calculate the localization properties of the vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references; accepted in Phys. Rev.

    Minimum Degree up to Local Complementation: Bounds, Parameterized Complexity, and Exact Algorithms

    Full text link
    The local minimum degree of a graph is the minimum degree that can be reached by means of local complementation. For any n, there exist graphs of order n which have a local minimum degree at least 0.189n, or at least 0.110n when restricted to bipartite graphs. Regarding the upper bound, we show that for any graph of order n, its local minimum degree is at most 3n/8+o(n) and n/4+o(n) for bipartite graphs, improving the known n/2 upper bound. We also prove that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term). The local minimum degree problem is NP-Complete and hard to approximate. We show that this problem, even when restricted to bipartite graphs, is in W[2] and FPT-equivalent to the EvenSet problem, which W[1]-hardness is a long standing open question. Finally, we show that the local minimum degree is computed by a O*(1.938^n)-algorithm, and a O*(1.466^n)-algorithm for the bipartite graphs

    Exponential decay properties of Wannier functions and related quantities

    Full text link
    The spatial decay properties of Wannier functions and related quantities have been investigated using analytical and numerical methods. We find that the form of the decay is a power law times an exponential, with a particular power-law exponent that is universal for each kind of quantity. In one dimension we find an exponent of -3/4 for Wannier functions, -1/2 for the density matrix and for energy matrix elements, and -1/2 or -3/2 for different constructions of non-orthonormal Wannier-like functions.Comment: 4 pages, with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_wann/index.htm

    Ab Initio Study of Screw Dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals

    Full text link
    We report the first ab initio density-functional study of screw dislocations cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.Comment: 3 figures, 3 table
    • …
    corecore