9,891 research outputs found

    Macroscopic fe-simulation of residual stresses in thermo-mechanically processed steels considering phase transformation effects

    Get PDF
    Residual stresses are an important issue as they affect both the manufacturing processes as well as the performance of the final parts. Taking into account the whole process chain of hot forming, the integrated heat treatment provided by a defined temperature profile for cooling of the parts offers a great potential for the targeted adjustment of the desired residual stress state. However, in addition to elastic, plastic and linear thermal strain components, the complex material phenomena arising from phase transformation effects of the polymorphic steels have to be considered in order to predict the residual stresses. These transformation strains account for the plastic deformation at the phase boundary between the emerging and the parent phase. In addition, they are strongly related to the transformation induced plasticity (TRIP) phenomena which depend on the stress state. The aim of this study is the investigation of TRIP effects and their impact on residual stresses regarding the typical hot forming steels 1.7225 (DIN: 42CrMo4) and 1.3505 (DIN: 100Cr6) by means of an experimental-numerical approach. The TRIP behaviour of the materials under consideration is integrated into an FE simulation model in the commercial software Simufact.forming for the purpose of residual stress prediction. The experimental thermo-mechanical investigations are carried out using a quenching and forming dilatometer. These experiments are numerically modelled by means of FEM which allows TRIP coefficients to be determined phasespecifically by numerical identification. For validation of the improved FE-model, an experimental thermo-mechanical reference process is considered, in which cylindrical specimens with an eccentric hole are hot formed and subsequently cooled by different temperature routes. Finally, the numerical model is validated by means of a comparison between residual stress states determined with X-ray diffraction and predicted residual stresses from the simulation

    Introduction to tailored forming

    Get PDF
    In recent years, the requirements for technical components have been increasing steadily. This development is intensified by the desire for products with lower weight, smaller size and extended functionality, but at the same time higher resistance against specific loads. Mono-material components manufactured according to established processes reach their limits regarding conflicting requirements. It is, for example, hardly possible to combine excellent mechanical properties with lightweight construction using mono-materials. Thus, a significant increase in production quality, lightweight design, functionality and efficiency can only be reached by combining different materials in one component. The superior aim of the Collaborative Research Centre (CRC) 1153 is to develop novel process chains for the production of hybrid solid components. In contrast to existing process chains in bulk metal forming, in which the joining process takes place during forming or at the end of the process chain, the CRC 1153 uses tailored semi-finished workpieces which are joined before the forming process. This results in a geometric and thermomechanical influence on the joining zone during the forming process which cannot be created by conventional joining techniques. The present work gives an overview of the CRC and the Tailored Forming approach including the applied joining, forming and finishing processes as well as a short summary of the accompanying design and evaluation methods

    Numerical and experimental investigations on the fatigue life of hot work tool steel X38CRMOV5-3 under forging process conditions

    Get PDF
    Hot forging dies experience during service excessive cyclic thermo-mechanical, tribological as well as chemical loads. These loads occur in a repeated manner and may cause premature fatigue failure of the forming tools and thus lead to an interruption of the production process. Die failures due to fatigue crack initiation constitute about 25 % of all failure types. The initiation and propagation of fatigue cracks can mainly be ascribed to high cyclic thermal and mechanical loads exerted on the tool material. Thus the hot work tool steel in service should combine a high red hardness with the ability to withstand heat checking at a high abrasion resistance. One of the most commonly used hot work tool steels for manufacturing high quality tools for hot forming operations like forging and casting is AISI H13 (X38CrMoV5-3), which also provides these properties. The numerical simulation based on the finite element method (FEM) has so far become an indispensable tool for the design and optimisation of hot forging processes. So far FE based process simulations are limited to obtaining accurate results related to the formability of the workpiece material and the necessary press force. Tool related aspects like the prediction of the tool life quantity and the estimation of abrasive wear is so far limited to cold forming tools. Due to the complex thermo-mechanical phenomena occurring in the interface layer between workpiece and forming tool it was so far not possible to give a reliable estimation on the tool life as current modelling approaches do not capture relevant influences in order to describe forging die fatigue and damage mechanisms in a realistic manner. For the prediction of the maximum cycles until fatigue failure it is still a common approach to resort to strain amplitude based models which neither take into account the transient temperature evolution nor the triaxiality of the local stress state. It is obvious that hot work tool steel materials need a more sophisticated modelling as severe thermo-mechanical loads are prevailing. In order to make a reliable estimation on the tool life quantity of forging dies it is therefore necessary to use advanced and sophisticated material models

    Microstructure and wear behaviour of high alloyed hot-work tool steels 1.2343 and 1.2367 under thermo-mechanical loading

    Get PDF
    Tools and their maintenance costs in hot forging processes account for a considerable proportion of the total components' costs. Forging tools undergo extreme heating and subsequent cooling during the forging process and between the forging cycles, respectively. This cyclic heating and cooling of the tool surfaces leads to local changes in the tool microstructure which result in hardening or softening of the material in different regions of the tool and consequently influence the tool strength. Temperature in the tool areas experiencing high thermo-mechanical loadings can exceed the austenitic temperature. Hence, a strong cooling, for example by spraying or lubrication, can lead to formation of a martensitic layer in the boundary zone of the tool. Due to its higher hardness, martensitic layer has greater resistance to wear as compared to the basic or tempered materials. In the scope of this paper, the austenitisation behaviours of two high alloyed hot-work tool steels, 1.2343 and 1.2367, have been characterized by means of dilatometer tests to obtain time-temperature-austenitisation (TTA) diagrams for specimen under thermo-mechanical loads. Moreover, continuous-cooling-transformation (CCT) diagrams were recorded. Metallographic investigations were carried out to gather a detailed understanding of the microstructure behaviour and its resulting hardness. With the results of this works, it is aimed to gather a detailed and accurate insight into the arising hardening and softening effects. This would eventually lead to an optimisation of the numerical modelling for tool wear prediction

    Numerical Modelling of High Speed Blanking Considering Thermoviscoplastic Effects

    Get PDF
    To achieve the required specifications of the cut-edge profile of a blank, a time consuming trial and error procedures based on empirical information are utilized. However, the modern industry demands high quality product specifications in the shortest possible production time. Therefore, in order to predict the cut-edge profile and speed up the production process, it is essential to develop a reliable numerical model of the high speed blanking process which can predict the cut-edge profile of the blanks. In this study, the Lagrangian based finite element (FE) approach was used to model large strain deformation that takes place in the shearzone during blanking. However, the large deformation is difficult to model using Lagrangian approach as it leads to a severe distortion of the FE mesh. Therefore, in order to overcome a premature termination of the analysis due to the mesh distortion, an adaptive remeshing and rezoning technique was developed. Furthermore, to model the ductile fracture, the discrete crack propagation method was implemented in the MSC.Marc® Due to high speed of the cutting stamp, thermoviscoplastic material behaviour has to be taken into account. The Johnson-Cook plasticity model was used to model viscoplasticity. The results obtained from the FE analysis are presented in this paper

    Mechanical properties and formability of en AW-7075 in cold forming processes

    Get PDF
    Due to a low density and high tensile strength, the aluminum alloy EN AW 7075 T6 offers a high lightweight potential for structural components. Since its formability is limited at room temperature in the T6 temper state, the potential of this alloy for automotive bodies is only utilizable by adapted deep drawing processes. In recent years, process chains suited for warm and hot forming have been researched and developed. However, warm and hot forming solutions require additional process steps and a complex tooling system in comparison to cold forming processes. Alternatively, the forming of such blanks at room temperature in the W temper state is favorable since conventional tools can be used. The W temper state is a heat treatment condition achieved after solution heat treatment and subsequent quenching, which is characterized by an increased ductility. However, this condition is unstable, due to the onset of natural ageing. With increasing time after the quenching step, the strength of the material increases, which leads to a reduction of formability. Another phenomenon that occurs after quenching is the Portevin Le-Chatelier effect. This effect causes the formation of flow lines during cold forming and results in a decrease of ductility. Hence, the objective of the investigations was to determine the formability of EN AW 7075 as a function of the natural ageing time after solution heat treatment and quenching. Therefore, tensile tests of various aged samples were carried out. The results show a relation of the formability to the natural ageing time and a dependency on the quenching rate. Furthermore, a heat treatment strategy for EN AW-7075 was developed, that considers manufacturing processes like the cathodic dip coating. The influence of the quenching rate, ageing time and temperature as well as the influence of temperature of the paint baking process after the cathodic dip coating were considered. Therefore, a design of experiments and tensile tests were carried out. Thus, the deep drawing of EN AW-7075 at room temperature is particularly promoted. © 2020 Published under licence by IOP Publishing Ltd

    Is the Crisis in the Civil Justice System Real or Imagined

    Get PDF

    Targeted adjustment of residual stresses in hot-formed components by means of process design based on finite element simulation

    Get PDF
    The aim of this work is to generate an advantageous compressive residual stress distribution in the surface area of hot-formed components by intelligent process control with tailored cooling. Adapted cooling is achieved by partial or temporal instationary exposure of the specimens to a water–air spray. In this way, macroscopic effects such as local plastification caused by inhomogeneous strains due to thermal and transformation-induced loads can be controlled in order to finally customise the surface-near residual stress distribution. Applications for hot-formed components often require special microstructural properties, which guarantee a certain hardness or ductility. For this reason, the scientific challenge of this work is to generate different residual stress distributions on components surfaces, while the geometric as well as microstructural properties of AISI 52100 alloy stay the same. The changes in the residual stresses should therefore not result from the mentioned changed component properties, but solely from the targeted process control. Within the scope of preliminary experimental studies, tensile residual stresses in a martensitic microstructure were determined on reference components, which had undergone a simple cooling in water (from the forming heat), or low compressive stresses in pearlitic microstructures were determined after simple cooling in atmospheric air. Numerical studies are used to design two tailored cooling strategies capable of generating compressive stresses in the same components. The developed processes with tailored cooling are experimentally realised, and their properties are compared to those of components manufactured involving simple cooling. Based on the numerical and experimental analyses, this work demonstrates that it is possible to influence and even invert the sign of the residual stresses within a component by controlling the macroscopic effects mentioned above

    Estimation of Fiber Orientations Using Neighborhood Information

    Full text link
    Data from diffusion magnetic resonance imaging (dMRI) can be used to reconstruct fiber tracts, for example, in muscle and white matter. Estimation of fiber orientations (FOs) is a crucial step in the reconstruction process and these estimates can be corrupted by noise. In this paper, a new method called Fiber Orientation Reconstruction using Neighborhood Information (FORNI) is described and shown to reduce the effects of noise and improve FO estimation performance by incorporating spatial consistency. FORNI uses a fixed tensor basis to model the diffusion weighted signals, which has the advantage of providing an explicit relationship between the basis vectors and the FOs. FO spatial coherence is encouraged using weighted l1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is encouraged using a squared error between the observed and reconstructed diffusion weighted signals. After appropriate weighting of these competing objectives, the resulting objective function is minimized using a block coordinate descent algorithm, and a straightforward parallelization strategy is used to speed up processing. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for both qualitative and quantitative evaluation. The results demonstrate that FORNI improves the quality of FO estimation over other state of the art algorithms.Comment: Journal paper accepted in Medical Image Analysis. 35 pages and 16 figure

    c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration.

    Get PDF
    The radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves. A key function of c-Jun is the activation of a repair program in Schwann cells and the creation of a cell specialized to support regeneration. We show that absence of c-Jun results in the formation of a dysfunctional repair cell, striking failure of functional recovery, and neuronal death. We conclude that a single glial transcription factor is essential for restoration of damaged nerves, acting to control the transdifferentiation of myelin and Remak Schwann cells to dedicated repair cells in damaged tissue
    corecore