1,036 research outputs found

    Axial residual stresses in boron fibers

    Get PDF
    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed

    Residual stresses in boron/tungsten and boron/carbon fibers

    Get PDF
    By measuring the change in fracture stress of 203 micrometer diameter fibers of boron on tungsten (B/W) as a function of fiber diameter as reduced by chemical etching, it is shown that the flaws which limit B/W fiber strength are located at the surface and in the tungsten boride core. After etching to a diameter of 188 micrometers m virtually all fiber fractures were caused by core flaws, the average strength being 4.50 GN/sq m. If both the surface and core flaws are removed, the fracture strength, limited by flaws in the boron itself, is approximately 6.89 GN/sq m. This was measured on B/W fibers which were split longitudinally and had their cores removed by chemical etching. The longitudinal residual stress distribution was determined for 102 micrometer diameter B/W and B/C fibers

    Longitudinal residual stresses in boron fibers

    Get PDF
    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed

    Calculation of residual principal stresses in CVD boron on carbon filaments

    Get PDF
    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates

    System measures unidirectional forces, excludes extraneous forces

    Get PDF
    System measures unidirectional force without interference from other directional forces. The measuring apparatus is mounted so that it only moves vertically and is constrained from horizontal and rotational movement. This system can be used to accurately measure small forces in one direction, or as an analytic balance

    Image effects and the vibrating sample magnetometer

    Get PDF
    Image effects and vibrating sample magnetomete

    An explanation of anomalous non-Hookean deformation of ionic single crystals

    Get PDF
    Anomalous non-Hookean deformation of ionic single crystal

    Reactive melt infiltration of silicon-molybdenum alloys into microporous carbon preforms

    Get PDF
    Investigations on the reactive melt infiltration of silicon-1.7 and 3.2 at.% molybdenum alloys into microporous carbon preforms have been carried out by modeling, differential thermal analysis (DTA), and melt infiltration experiments. These results indicate that the pore volume fraction of the carbon preform is a very important parameter in determining the final composition of the reaction-formed silicon carbide and the secondary phases. Various undesirable melt infiltration results, e.g. choking-off, specimen cracking, silicon veins, and lake formation, and their correlation with inadequate preform properties are presented. The liquid silicon-carbon reaction exotherm temperatures are influenced by the pore and carbon particle size of the preform and the compositions of infiltrants. Room temperature flexural strength and fracture toughness of materials made by the silicon-3.2 at.% molybdenum alloy infiltration of medium pore size preforms are also discussed

    Theoretical considerations for Reaction-Formed Silicon Carbide (RFSC) formation by molten silicon infiltration into slurry-derived preforms

    Get PDF
    For reaction-formed silicon carbide (RFSC) ceramics produced by silicon melt infiltration of porous carbon preforms, equations are developed to relate the amount of residual silicon to the initial carbon density. Also, for a slurry derived preform containing both carbon and silicon powder, equations are derived which relate the amount of residual silicon in the RFSC to the relative density of the carbon in the preform and to the amount of silicon powder added to the slurry. For a porous carbon preform that does not have enough porosity to prevent choking-off of the silicon infiltration, these results show that complete silicon infiltration can occur by adding silicon powder to the slurry mixture used to produce these preforms

    Experimental analysis of the Fitzgerald apparatus

    Get PDF
    Experimental analysis of Fitzgerald dynamic compliance machin
    corecore