1,625 research outputs found
Expanding Access to Naloxone: A Review of Distribution Strategies
Amidst an ongoing opioid crisis that claimed 47,600 lives in 2017, increasing the availability of the rescue medication naloxone is a high priority. Naloxone reverses an opioid overdose when given intranasally or intramuscularly. But to be effective, naloxone must be available at the time of overdose. Naloxone distribution to laypeople can save a life when first responders are not immediately available, or when people witnessing overdoses are unwilling or unable to call 911. Naloxone is increasingly available through some pharmacies under a standing order; however, even when available, cost and stigma barriers persist. This Issue Brief reviews recent evidence on the outcomes and cost-effectiveness of naloxone distribution strategies in community, pharmacy, and other health care settings
Investigation of hopping transport in n a Si H c Si solar cells with pulsed electrically detected magnetic resonance
Hopping transport through heterostructure solar cells based on B doped crystalline silicon wafers with highly P doped hydrogenated amorphous silicon emitters with different thicknesses is investigated at T 10 K with pulsed electrically detected magnetic resonance. The measurements show that transport is dominated by conduction band tail states g amp; 8776; 2.0046 with a distribution of their mutual coupling strength. The signal intensity correlates to the sample thickness and the g factors do not exhibit an anisotropy which suggests that transport is still dominated by bulk properties of amorphous silicon. In addition, two broad Pdonor hyperfine satellites can be detected. Influences of interface defects such as Pb like states known from silicon dioxide interfaces are either suppressed by the high Fermi energy at the interface or not presen
Environmentally Friendly Improvement of Plasmonic Nanostructure Functionality towards Magnetic Resonance Applications
Plasmonic nanostructures have attracted a broad research interest due to their application perspectives in various fields such as biosensing, catalysis, photovoltaics, and biomedicine. Their synthesis by pulsed laser ablation in pure water enables eliminating various side effects originating from chemical contamination. Another advantage of pulsed laser ablation in liquids (PLAL) is the possibility to controllably produce plasmonic nanoparticles (NPs) in combination with other plasmonic or magnetic materials, thus enhancing their functionality. However, the PLAL technique is still challenging in respect of merging metallic and semiconductor specific features in nanosized objects that could significantly broaden application areas of plasmonic nanostructures. In this work, we performed synthesis of hybrid AuSi NPs with novel modalities by ultrashort laser ablation of bulk gold in water containing silicon NPs. The Au/Si atomic ratio in the nanohybrids was finely varied from 0.5 to 3.5 when changing the initial Si NPs concentration in water from 70 ”g/mL to 10 ”g/mL, respectively, without requiring any complex chemical procedures. It has been found that the laser-fluence-insensitive silicon content depends on the mass of nanohybrids. A high concentration of paramagnetic defects (2.2·à 1018 spin/g) in polycrystalline plasmonic NPs has been achieved. Our findings can open further prospects for plasmonic nanostructures as contrast agents in optical and magnetic resonance imaging techniques, biosensing, and cancer theranostics
Physical Vacuum Properties and Internal Space Dimension
The paper addresses matrix spaces, whose properties and dynamics are
determined by Dirac matrices in Riemannian spaces of different dimension and
signature. Among all Dirac matrix systems there are such ones, which nontrivial
scalar, vector or other tensors cannot be made up from. These Dirac matrix
systems are associated with the vacuum state of the matrix space. The simplest
vacuum system realization can be ensured using the orthonormal basis in the
internal matrix space. This vacuum system realization is not however unique.
The case of 7-dimensional Riemannian space of signature 7(-) is considered in
detail. In this case two basically different vacuum system realizations are
possible: (1) with using the orthonormal basis; (2) with using the
oblique-angled basis, whose base vectors coincide with the simple roots of
algebra E_{8}.
Considerations are presented, from which it follows that the least-dimension
space bearing on physics is the Riemannian 11-dimensional space of signature
1(-)& 10(+). The considerations consist in the condition of maximum vacuum
energy density and vacuum fluctuation energy density.Comment: 19 pages, 1figure. Submitted to General Relativity and Gravitatio
Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn
The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements
Rare processes and coherent phenomena in crystals
We study coherent enhancement of Coulomb excitation of high energy particles
in crystals. We develop multiple scattering theory description of coherent
excitation which consistently incorporates both the specific resonant
properties of particle-crystal interactions and the final/initial state
interaction effects typical of the diffractive scattering. Possible
applications to observation of induced radiative neutrino transitions are
discussed.Comment: 8 pages, LaTe
Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N<sub>2</sub>-fixing community depending on depth and agricultural use of soil
In this survey, a total of 80 787 reads and 28 171 unique NifH protein sequences were retrieved from soil RNA. This dataset extends our knowledge about the structure and diversity of the functional diazotrophic communities in agricultural soils from Argentinean Pampas. Operational taxonomic unit (OTU)-based analyses showed that nifH phylotypes related to Geobacter and Anaeromyxobacter (44.8%), Rhizobiales (29%), Cyanobacteria (16.7%), and Verrucomicrobiales (8%) are key microbial components of N2 fixation in soils associated with no-till management and soil depth. In addition, quantification of nifH gene copies related to Geobacter and Cyanobacteria revealed that these groups are abundant in soils under maizeâsoybean rotation and soybean monoculture, respectively. The correlation of physicochemical soil parameters with the diazotrophic diversity and composition showed that soil stability and organic carbon might contribute to the functional signatures of particular nifH phylotypes in fields under no-till management. Because crop production relies on soil-borne microorganism's activities, such as free N2 fixation, the information provided by our study on the diazotrophic population dynamics, associated with the edaphic properties and land-use practices, represents a major contribution to gain insight into soil biology, in which functionally active components are identified.Instituto de Biotecnologia y Biologia Molecula
The BioGRID Interaction Database: 2011 update
The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein
interaction data from model organisms and humans
(http://www.thebiogrid.org). BioGRID currently holds 347 966
interactions (170 162 genetic, 177 804 protein) curated from both
high-throughput data sets and individual focused studies, as derived
from over 23 000 publications in the primary literature. Complete
coverage of the entire literature is maintained for budding yeast
(Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe)
and thale cress (Arabidopsis thaliana), and efforts to expand curation
across multiple metazoan species are underway. The BioGRID houses 48
831 human protein interactions that have been curated from 10 247
publications. Current curation drives are focused on particular areas
of biology to enable insights into conserved networks and pathways that
are relevant to human health. The BioGRID 3.0 web interface contains
new search and display features that enable rapid queries across
multiple data types and sources. An automated Interaction Management
System (IMS) is used to prioritize, coordinate and track curation
across international sites and projects. BioGRID provides interaction
data to several model organism databases, resources such as Entrez-Gene
and other interaction meta-databases. The entire BioGRID 3.0 data
collection may be downloaded in multiple file formats, including PSI MI
XML. Source code for BioGRID 3.0 is freely available without any
restrictions
General relativity as an effective field theory: The leading quantum corrections
I describe the treatment of gravity as a quantum effective field theory. This
allows a natural separation of the (known) low energy quantum effects from the
(unknown) high energy contributions. Within this framework, gravity is a well
behaved quantum field theory at ordinary energies. In studying the class of
quantum corrections at low energy, the dominant effects at large distance can
be isolated, as these are due to the propagation of the massless particles
(including gravitons) of the theory and are manifested in the
nonlocal/nonanalytic contributions to vertex functions and propagators. These
leading quantum corrections are parameter-free and represent necessary
consequences of quantum gravity. The methodology is illustrated by a
calculation of the leading quantum corrections to the gravitational interaction
of two heavy masses.Comment: 34 pages, Latex, UMHEP-40
Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake
Wholeâbody euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulinâ and contractionâstimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrinâassociated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulinâ and contractionâmediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrinâassociated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes. [Image: see text
- âŠ