156 research outputs found

    Antimicrobial solid media for screening non‐sterile Arabidopsis thaliana seeds

    Get PDF
    Stable genetic transformation of plants is a low-efficiency process, and identification of positive transformants usually relies on screening for expression of a co-transformed marker gene. Often this involves germinating seeds on solid media containing a selection reagent. Germination on solid media requires surface sterilization of seeds and careful aseptic technique to prevent microbial contamination, but surface sterilization techniques are time consuming and can cause seed mortality if not performed carefully. We developed an antimicrobial cocktail that can be added to solid media to inhibit bacterial and fungal growth without impairing germination, allowing us to bypass the surface sterilization step. Adding a combination of terbinafine (1 ÎŒM) and timentin (200 mg l−1) to Murashige and Skoog agar delayed the onset of observable microbial growth and did not affect germination of non-sterile seeds from 10 different wild-type and mutant Arabidopsis thaliana accessions. We named this antimicrobial solid medium “MSTT agar”. Seedlings sown in non-sterile conditions could be maintained on MSTT agar for up to a week without observable contamination. This medium was compatible with rapid screening methods for hygromycin B, phosphinothricin (BASTA) and nourseothricin resistance genes, meaning that positive transformants can be identified from non-sterile seeds in as little as 4 days after stratification, and transferred to soil before the onset of visible microbial contamination. By using MSTT agar we were able to select genetic transformants on solid media without seed surface sterilization, eliminating a tedious and time-consuming step.</p

    Insects for breakfast and whales for dinner: the diet and body condition of dingoes on Fraser Island (K’gari)

    Get PDF
    Top-predators play stabilising roles in island food webs, including Fraser Island, Australia. Subsidising generalist predators with human-sourced food could disrupt this balance, but has been proposed to improve the overall health of the island’s dingo (Canis lupus dingo) population, which is allegedly ‘starving’ or in ‘poor condition’. We assess this hypothesis by describing the diet and health of dingoes on Fraser Island from datasets collected between 2001 and 2015. Medium-sized mammals (such as bandicoots) and fish were the most common food items detected in dingo scat records. Stomach contents records revealed additional information on diet, such as the occurrence of human-sourced foods. Trail camera records highlighted dingo utilisation of stranded marine fauna, particularly turtles and whales. Mean adult body weights were higher than the national average, body condition scores and abundant-excessive fat reserves indicated a generally ideal-heavy physical condition, and parasite loads were low and comparable to other dingo populations. These data do not support hypotheses that Fraser Island dingoes have restricted diets or are in poor physical condition. Rather, they indicate that dingoes on Fraser Island are capable of exploiting a diverse array of food sources which contributes to the vast majority of dingoes being of good-excellent physical condition

    Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts

    Get PDF
    Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-ÎČ-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies

    Systems-level engineering and characterization of Clostridium autoethanogenum through heterologous production of poly-3-hydroxybutyrate (PHB)

    Get PDF
    Gas fermentation is emerging as an economically attractive option for the sustainable production of fuels and chemicals from gaseous waste feedstocks. Clostridium autoethanogenum can use CO and/or CO + H as its sole carbon and energy sources. Fermentation of C. autoethanogenum is currently being deployed on a commercial scale for ethanol production. Expanding the product spectrum of acetogens will enhance the economics of gas fermentation. To achieve efficient heterologous product synthesis, limitations in redox and energy metabolism must be overcome. Here, we engineered and characterised at a systems-level, a recombinant poly-3-hydroxybutyrate (PHB)-producing strain of C. autoethanogenum. Cells were grown in CO-limited steady-state chemostats on two gas mixtures, one resembling syngas (20% H) and the other steel mill off-gas (2% H). Results were characterized using metabolomics and transcriptomics, and then integrated using a genome-scale metabolic model reconstruction. PHB-producing cells had an increased expression of the Rnf complex, suggesting energy limitations for heterologous production. Subsequent optimization of the bioprocess led to a 12-fold increase in the cellular PHB content. The data suggest that the cellular redox state, rather than the acetyl-CoA pool, was limiting PHB production. Integration of the data into the genome-scale metabolic model showed that ATP availability limits PHB production. Altogether, the data presented here advances the fundamental understanding of heterologous product synthesis in gas-fermenting acetogens

    Isolation, small population size, and management influence inbreeding and reduced genetic variation in K’gari dingoes

    Get PDF
    Small island populations are vulnerable to genetic decline via demographic and environmental stochasticity. In the absence of immigration, founder effects, inbreeding and genetic drift are likely to contribute to local extinction risk. Management actions may also have a greater impact on small, closed populations. The demographic and social characteristics of a species can, however, delay the impact of threats. K’gari, a ~ 1 660 km2 island off the Australian east coast and UNESCO World Heritage Site (Fraser Island 1842–2023), supports an isolated population of approximately 70–200 dingoes that represent an ideal opportunity to explore the small island paradigm. To examine temporal and spatial patterns of genetic diversity in this population we analysed single nucleotide polymorphism (SNP) genotype data (72 454 SNPS) for 112 K’gari dingoes collected over a 25-year period (1996 to 2020). Genetic diversity was lower in K’gari dingoes than mainland dingoes at the earliest time point in our study and declined significantly following a management cull in 2001. We did not find any spatial genetic patterns on the island, suggesting high levels of genetic connectivity between socially discrete packs. This connectivity, combined with the social structure and behaviour of dingoes, may act in concert to buffer the population from the impacts of genetic drift in the short term. Nevertheless, a general decline in genetic variation via inbreeding and drift has occurred over the past 20 years which we suggest should be considered in any future management planning for the population. Monitoring patterns of genetic variation, together with a clearer understanding of the social ecology of K’gari dingoes, will aid in the development of measurable genetic targets set over ecologically meaningful timelines, and help ensure continued survival of this culturally important population

    Vesicle-Associated Membrane Protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion

    Get PDF
    Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion

    Real-Time Measurement of F-Actin Remodelling during Exocytosis Using Lifeact-EGFP Transgenic Animals

    Get PDF
    F-actin remodelling is essential for a wide variety of cell processes. It is important in exocytosis, where F-actin coats fusing exocytic granules. The purpose of these F-actin coats is unknown. They may be important in stabilizing the fused granules, they may play a contractile role and promote expulsion of granule content and finally may be important in endocytosis. To elucidate these functions of F-actin remodelling requires a reliable method to visualize F-actin dynamics in living cells. The recent development of Lifeact-EGFP transgenic animals offers such an opportunity. Here, we studied the characteristics of exocytosis in pancreatic acinar cells obtained from the Lifeact-EGFP transgenic mice. We show that the time-course of agonist-evoked exocytic events and the kinetics of each single exocytic event are the same for wild type and Lifeact-EGFP transgenic animals. We conclude that Lifeact-EGFP animals are a good model to study of exocytosis and reveal that F-actin coating is dependent on the de novo synthesis of F-actin and that development of actin polymerization occurs simultaneously in all regions of the granule. Our insights using the Lifeact-EGFP mice demonstrate that F-actin coating occurs after granule fusion and is a granule-wide event

    Understanding conflict among experts working on controversial species: A case study on the Australian dingo

    Get PDF
    Expert elicitation can be valuable for informing decision-makers on conservation and wildlife management issues. To date, studies eliciting expert opinions have primarily focused on identifying and building consensus on key issues. Nonetheless, there are drawbacks of a strict focus on consensus, and it is important to understand and emphasize dissent, too. This study adopts a dissensus-based Delphi to understand conflict among dingo experts. Twenty-eight experts participated in three rounds of investigation. We highlight disagreement on most of the issues explored. In particular, we find that disagreement is underpinned by what we call “conflict over values” and “conflict over evidence.” We also note the broader role played by distrust in influencing such conflicts. Understanding and recognizing the different elements shaping disagreement is critical for informing and improving decision-making and can also enable critique of dominant paradigms in current practices. We encourage greater reflexivity and open deliberation on these aspects and hope our study will inform similar investigations in other contexts.Valerio Donfrancesco, Benjamin L. Allen, Rob Appleby, Linda Behrendorff, Gabriel Conroy, Mathew S. Crowther, Christopher R. Dickman, Tim Doherty, Bronwyn A. Fancourt, Christopher E. Gordon, Stephen M. Jackson, Chris N. Johnson, Malcolm S. Kennedy, Loukas Koungoulos, Mike Letnic, Luke K.-P. Leung, Kieren J. Mitchell, Bradley Nesbitt, Thomas Newsome, Carlo Pacioni, Justine Phillip, Brad V. Purcell, Euan G. Ritchie, Bradley P. Smith, Danielle Stephens, Jack Tatler, Lily M. van Eeden, Kylie M. Cairn

    Modification of an enzyme biocatalyst for the efficient and selective oxidative demethylation of para-substituted benzene derivatives

    Get PDF
    The bacterial CYP199A4 enzyme is able to oxidise a narrow range of aromatic acids, which includes 4‐methoxybenzoic acid, efficiently. A serine 244 to aspartate variant was identified with enhanced activity for a wide range of para‐methoxy‐substituted benzenes. Substrates in which the acidic benzoic acid moiety is replaced with a phenol and the amide, aldehyde and bromide analogues were all oxidised with high activity by the S244D mutant (product formation rate >600 nmol nmolCYP−1 min−1) with turnover numbers of up to 20 000. If the carboxylate moiety was modified to a nitro, ketone, boronic acid, hydroxymethyl or nitrile group, these substrates were also oxidised at a significantly higher activity by S244D than the wild‐type enzyme. 3,4‐Dimethoxybenzaldehyde was demethylated selectively and oxidatively to 3‐methoxy‐4‐hydroxybenzaldehyde by the S244D mutant 84‐fold more rapidly than with the wild‐type enzyme. CYP199A4 would have applications in the catalytic regioselective oxidative demethylation of suitably substituted benzene substrates under mild conditions and in the presence of more oxidatively sensitive functional groups, such as an aldehyde.Rebecca R. Chao, Ian C.‐K. Lau, James J. De Voss, Stephen G. Bel
    • 

    corecore