33 research outputs found
Recommended from our members
Neonatal development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function.
Although basal permeability barrier function is established at birth, the higher risk for infections, dermatitis, and percutaneous absorption of toxic agents may indicate incomplete permeability barrier maturation in the early neonatal period. Since stratum corneum (SC) acidification in adults is required for normal permeability barrier homeostasis, and lipid processing occurs via acidic pH dependent enzymes, we hypothesized that, in parallel with the less acidic surface pH, newborn SC would exhibit signs of incomplete barrier formation. Fluorescence lifetime imaging reveals that neonatal rat SC acidification first becomes evident by postnatal day 3, in extracellular "microdomains" at the SC- stratum granulosum (SG) interface, where pH-sensitive lipid processing is known to occur. This localized acidification correlated temporally with efficient processing of secreted lamellar body contents to mature extracellular lamellar bilayers. Since expression of the key acidifying mechanism NHE1 is maximal just prior to birth, and gradually declines over the first postnatal week, suboptimal SC acidification at birth cannot be attributed to insufficient NHE1 expression, but could instead reflect reduced NHE1 activity. Expression of the key lipid processing enzyme, beta-glucocerebrosidase (beta-GlcCer'ase), develops similar to NHE1, excluding a lack of beta-GlcCer'ase protein as rate limiting for efficient lipid processing. These results define a postnatal development consisting of initial acidification in the lower SC followed by outward progression, which is accompanied by formation of mature extracellular lamellar membranes. Thus, full barrier competence appears to require the extension of acidification in microdomains from the SC/SG interface outward toward the skin surface in the immediate postnatal period
Recommended from our members
NHE1 Regulates the Stratum Corneum Permeability Barrier Homeostasis MICROENVIRONMENT ACIDIFICATION ASSESSED WITH FLUORESCENCE LIFETIME IMAGING*
The outermost epidermal layer, the stratum corneum (SC), exhibits an acidic surface pH, whereas the pH at its base approaches neutrality. NHE1 is the only Na(+)/H(+) antiporter isoform in keratinocytes and epidermis, and has been shown to regulate intracellular pH. We now demonstrate a novel function for NHE1, as we find that it also controls acidification of extracellular "microdomains" in the SC that are essential for activation of pH-sensitive enzymes and the formation of the epidermal permeability barrier. NHE1 expression in epidermis is most pronounced in granular cell layers, and although the surface pH of NHE1 knockout mice is only slightly more alkaline than normal using conventional pH measurements, a more sensitive method, fluorescence lifetime imaging, demonstrates that the acidic intercellular domains at the surface and of the lower SC disappear in NHE1 -/- animals. Fluorescence lifetime imaging studies also reveal that SC acidification does not occur through a uniform gradient, but through the progressive accumulation of acidic microdomains. These findings not only visualize the spatial distribution of the SC pH gradient, but also demonstrate a role for NHE1 in the generation of acidic extracellular domains of the lower SC, thus providing the acidification of deep SC interstices necessary for lipid processing and barrier homeostasis
Recommended from our members
NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging.
The outermost epidermal layer, the stratum corneum (SC), exhibits an acidic surface pH, whereas the pH at its base approaches neutrality. NHE1 is the only Na(+)/H(+) antiporter isoform in keratinocytes and epidermis, and has been shown to regulate intracellular pH. We now demonstrate a novel function for NHE1, as we find that it also controls acidification of extracellular "microdomains" in the SC that are essential for activation of pH-sensitive enzymes and the formation of the epidermal permeability barrier. NHE1 expression in epidermis is most pronounced in granular cell layers, and although the surface pH of NHE1 knockout mice is only slightly more alkaline than normal using conventional pH measurements, a more sensitive method, fluorescence lifetime imaging, demonstrates that the acidic intercellular domains at the surface and of the lower SC disappear in NHE1 -/- animals. Fluorescence lifetime imaging studies also reveal that SC acidification does not occur through a uniform gradient, but through the progressive accumulation of acidic microdomains. These findings not only visualize the spatial distribution of the SC pH gradient, but also demonstrate a role for NHE1 in the generation of acidic extracellular domains of the lower SC, thus providing the acidification of deep SC interstices necessary for lipid processing and barrier homeostasis