74 research outputs found

    Effect of sea component dissolution on fibrous structure of islands-in-the-sea spunbond nonwovens

    Get PDF
    Bu çalışma, 29-31 Mayıs 2017 tarihlerinde Yunanistan'da düzenlenen 17. World Textile Conference of the Association-of-Universities-for-Textiles (AUTEX) - Shaping the Future of Textiles Kongresi‘nde bildiri olarak sunulmuştur.This work presents the preliminary results of our efforts that focused on the development of lightweight and more fibrous nonwoven. For this objective, nonwoven webs that contain bicomponent filaments with island-in-the-sea cross section was produced by spunbonding, which involves extruding of sea and island polymer melts through dies, cooling, and attenuating the bicomponent filaments by high velocity air streams. Nylon-6 and Polyethylene were chosen as the island and sea polymers, respectively. Bonding process was applied to web first to keep structural integrity after removing the sea polymer. The web was hydroentangled with high speed water jets prior to the dissolving process to obtain fiber entanglement. Xylene, which is one of the few chemical that can dissolve Polyethylene, was used for the dissolution of the sea component from the fibrous structure of the spunbond nonwoven. Removal of the sea polymer from spunbond nonwovens that contain bicomponent filaments with islands-in-the-sea cross section was achieved by the developed dissolution process. Weight, thickness, and area of the nonwoven samples changed after the dissolution. After removing the sea polymer, spunbond nonwoven contains only thin island fibers and also gets lighter. Lightweight and more fibrous nonwovens can be obtained with the method given in this study.Assoc Univ Textile

    A realistic modeling of fluid infiltration in thin fibrous sheets

    Get PDF
    In this paper, a modeling study is presented to simulate the fluid infiltration in fibrous media. The Richards’ equation of two-phase flow in porous media is used here to model the fluid absorption in unsaturated/partially saturated fibrous thin sheets. The required consecutive equations, relative permeability, and capillary pressure as functions of medium’s saturation are obtained via fiber-level modeling and a long-column experiment, respectively. Our relative permeability calculations are based on solving the Stokes flow equations in partially saturated three-dimensional domains obtained by imaging the sheets’ microstructures. The Richards’ equation, together with the above consecutive correlations, is solved for fibrous media inclined with different angles. Simulation results are obtained for three different cases of upward, horizontal, and downward infiltrations. We also compared our numerical results with those of our long-column experiment and observed a good agreement. Moreover, we establish empirical coefficients for the semianalytical correlations previously proposed in the literature for the case of horizontal and downward infiltrations in thin fibrous sheets

    Simulation and Analysis of Unbonded Nonwoven Fibrous Structures

    Get PDF
    In this work we report on our algorithm for generating 3-D virtual structures resembling un-bonded fibrous webs. The paper discusses short and infinitely long fibers, each emulating a category of nonwoven fibrous medium. The structure Solid Volume Fraction (SVF), being the most important characteristic of a fibrous porous medium, is calculated for different fiberwebs and discussed in details. It is shown that the SVF of the fibrous structures generated by our algorithm is independent of the basis weight. In other words, the porosity of the medium is only a function of the fiber properties – this is as expected. It is also demonstrated that by decreasing the fiber diameter while keeping other properties of the virtual fiberweb constant causes the SVF to decrease almost linearly. The same is not observed for the fiber rigidity. The capability of our algorithm for generating fibrous webs made up of layers of different fibers is demonstrated and their properties are discussed. The application of such virtual fibrous structures in modeling transport phenomena in nonwoven materials and their potential applications in load-deformation studies are discussed

    Geometrical modeling of fibrous materials under compression

    Get PDF
    Many fibrous materials such as nonwovens are consolidated via compaction rolls in a so-called calendering process. Hot rolls compress the fiber assembly and cause fiber-to-fiber bonding resulting in a strong yet porous structure. In this paper, we describe an algorithm for generating three dimensional virtual fiberwebs and simulating the geometrical changes that happen to the structure during the calendering process. Fibers are assumed to be continuous filaments with square cross sections lying randomly in the x or y direction. The fibers are assumed to be flexible to allow bending over one another during the compression process. Lateral displacement is not allowed during the compaction process. The algorithm also does not allow the fibers to interpenetrate or elongate and so the mass of the fibers is conserved. Bending of the fibers is modeled either by considering a constant “slope of bending” or constant “span of bending.” The influence of the bending parameters on the propagation of compression through the material’s thickness is discussed. In agreement with our experimental observations, it was found that the average solid volume fraction profile across the thickness becomes U shaped after the calendering. The application of these virtual structures in studying transport phenomena in fibrous materials is also demonstrated

    Advances in high-throughput, high-capacity nonwoven membranes for chromatography in downstream processing: A review

    Get PDF
    : Nonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal. This article summarizes the various methods of manufacturing nonwoven fabrics, and the many methods available for the modification of the fiber surfaces. It also reviews recent studies focused on the use of nonwoven fabric devices in membrane chromatography and provides some perspectives on the challenges that need to be overcome to increase binding capacities, decrease residence times, and reduce pressure drops so that eventually they can replace resin column chromatography in downstream process operations

    Texture development in hydroentangled nonwovens

    Get PDF
    Kısa bir süre önce eş-oluşum(co-occurrence) temeline dayanan bir görünüm analiz metoduyla ilgili bir makalemizi sunduk. Bu makalemizde de aynı görünüm analiz metodunu kullanılarak, suyla iğnelenmiş (dolaştırılmış) dokunmamış kumaşlardaki yüzey görünümünün işlem parametrelerine bağlı olarak gelişimini inceleyeceğiz. Görünümdeki değişimi suyla iğneleme enerjisiyle ilişkilendirerek verilerimizi değerlendireceğiz. İşlem enerjisi, makinadaki basınç değişimi ve  geçiş sayısına göre kontrol edilmiş, tüm  kumaşlar aynı tül  ve aynı destek bandı üzerinde üretilmiştir. Verilerimiz bize, yüzey belirginliğinin basınç ile doğru orantılı olarak belli bir değere kadar iyileştiğini ve daha sonra ise görünümün bozulduğunu göstermiştir.Anahtar Kelimeler: Görünüm analizi, suyla iğneleme(dolaştırma), spesifik enerji, eş-oluşum yöntemi.The intention of this research is to develop an optical method and a turnkey imaging system for classifying texture in hydroentangled nonwovens. This paper uses this texture analysis method to examine the development of the texture during hydroentangling as a function process conditions. We report on the development of texture as a function of hydroentangling energy.  Energy was varied by controlling the pressure and number of passes. 1.7 dtex PET was selected as the fiber. A pilot-scale Honeycomb hydroentangling machine was used to produce fabrics under varying pressures and number of passes.  All fabrics were produced using the same web on the same forming belt substrate. Our data indicated that co-occurrence analysis is a good indicator for determining the surface texture properties. We have demonstrated that horizontal and vertical contrast functions and their respective power spectral analysis data will provide a useful tool for quantifying texture. We have also showed that hydroentangling pressure has a marked effect on the manner in which texture develops during the process. In general, increasing pressure and the number of passes will result in a better texture definition up to a certain point provided that the web is sufficiently consolidated.  If the web is not consolidated, higher pressures will result in perturbing the web with a concomitantly lower texture definition.Keywords: Texture analysis, hydroentanglement, specific energy, co-occurrence method.

    Evaluation of Silver Ion-Releasing Scaffolds in a 3D Coculture System of MRSA and Human Adipose-Derived Stem Cells for Their Potential Use in Treatment or Prevention of Osteomyelitis

    Get PDF
    Bone infection, also called osteomyelitis, can result when bacteria invade a bone. Treatment of osteomyelitis usually requires surgical debridement and prolonged antimicrobial therapy. The rising incidence of infection with multidrug-resistant bacteria, in particular methicillin-resistant staphylococcus aureus (MRSA), however, limits the antimicrobial treatment options available. Silver is well known for its antimicrobial properties and is highly toxic to a wide range of microorganisms. We previously reported our development of biocompatible, biodegradable, nanofibrous scaffolds that released silver ions in a controlled manner. The objective of this study was to determine the efficacy of these scaffolds in treating or preventing osteomyelitis. To achieve this objective, antimicrobial efficacy was determined using a 3D coculture system of human adipose-derived stem cells (hASC) and MRSA. Human ASC were seeded on the scaffolds and induced to undergo osteogenic differentiation in both the absence and presence of MRSA. Our results indicated that the silver ion-releasing scaffolds not only inhibited biofilm formation, but also supported osteogenesis of hASC. Our findings suggest that these biocompatible, degradable, silver ion-releasing scaffolds can be used at an infection site to treat osteomyelitis and/or to coat bone implants as a preventative measure against infection postsurgery

    Dynamic response of thermally bonded bicomponent fibre nonwovens

    Get PDF
    Having a unique microstructure, nonwoven fabrics possess distinct mechanical properties, dissimilar to those of woven fabrics and composites. This paper aims to introduce a methodology for simulating a dynamic response of core/sheath-type thermally bonded bicomponent fibre nonwovens. The simulated nonwoven fabric is treated as an assembly of two regions with distinct mechanical properties. One region - the fibre matrix – is composed of non-uniformly oriented core/sheath fibres acting as link between bond points. Non-uniform orientation of individual fibres is introduced into the model in terms of the orientation distribution function in order to calculate the structure’s anisotropy. Another region – bond points – is treated in simulations as a deformable bicomponent composite material, composed of the sheath material as its matrix and the core material as reinforcing fibres with random orientations. Time-dependent anisotropic mechanical properties of these regions are assessed based on fibre characteristics and manufacturing parameters such as the planar density, core/sheath ratio, fibre diameter etc. Having distinct anisotropic mechanical properties for two regions, dynamic response of the fabric is modelled in the finite element software with shell elements with thicknesses identical to those of the bond points and fibre matrix

    Fabrication of novel high surface area mushroom gilled fibers and their effects on human adipose derived stem cells under pulsatile fluid flow for tissue engineering applications

    Get PDF
    Abstract The fabrication and characterization of novel high surface area hollow gilled fiber tissue engineering scaffolds via industrially relevant, scalable, repeatable, high speed, and economical nonwoven carding technology is described. Scaffolds were validated as tissue engineering scaffolds using human adipose derived stem cells (hASC) exposed to pulsatile fluid flow (PFF). The effects of fiber morphology on the proliferation and viability of hASC, as well as effects of varied magnitudes of shear stress applied via PFF on the expression of the early osteogenic gene marker runt related transcription factor 2 (RUNX2) were evaluated. Gilled fiber scaffolds led to a significant increase in proliferation of hASC after seven days in static culture, and exhibited fewer dead cells compared to pure PLA round fiber controls. Further, hASC-seeded scaffolds exposed to 3 and 6 dyn/cm resulted in significantly increased mRNA expression of RUNX2 after one hour of PFF in the absence of soluble osteogenic induction factors. This is the first study to describe a method for the fabrication of high surface area gilled fibers and scaffolds. The scalable manufacturing process and potential fabrication across multiple nonwoven and woven platforms makes them promising candidates for a variety of applications that require high surface area fibrous materials. Statement of Significance We report here for the first time the successful fabrication of novel high surface area gilled fiber scaffolds for tissue engineering applications. Gilled fibers led to a significant increase in proliferation of human adipose derived stem cells after one week in culture, and a greater number of viable cells compared to round fiber controls. Further, in the absence of osteogenic induction factors, gilled fibers led to significantly increased mRNA expression of an early marker for osteogenesis after exposure to pulsatile fluid flow. This is the first study to describe gilled fiber fabrication and their potential for tissue engineering applications. The repeatable, industrially scalable, and versatile fabrication process makes them promising candidates for a variety of scaffold-based tissue engineering applications. Graphical abstrac

    Skin Tissue Engineering for the Infected Wound Site: Biodegradable PLA Nanofibers and a Novel Approach for Silver Ion Release Evaluated in a 3D Coculture System of Keratinocytes and Staphylococcus aureus

    Get PDF
    Wound infection presents a challenging and growing problem. With the increased prevalence and growth of multidrug-resistant bacteria, there is a mounting need to reduce and eliminate wound infections using methodologies that limit the ability of bacteria to evolve into further drug-resistant strains. A well-known strategy for combating bacterial infection and preventing wound sepsis is through the delivery of silver ions to the wound site. High surface area silver nanoparticles (AgNPs) allowing extensive silver ion release have therefore been explored in different wound dressings and/or skin substitutes. However, it has been recently shown that AgNPs can penetrate into the stratum corneum of skin or diffuse into the cellular plasma membrane, and may interfere with a variety of cellular mechanisms. The goal of this study was to introduce and evaluate a new type of high surface area metallic silver in the form of highly porous silver microparticles (AgMPs). Polylactic acid (PLA) nanofibers were successfully loaded with either highly porous AgMPs or AgNPs and the antimicrobial efficacy and cytotoxicity of the two silver-based wound dressings were assessed and compared. To better mimic the physiological environment in vivo where both human cells and bacteria are present, a novel coculture system combining human epidermal keratinocytes and Staphylococcus aureus bacteria was designed to simultaneously evaluate human skin cell cytotoxicity with antimicrobial efficacy in a three-dimensional environment. We found that highly porous AgMPs could be successfully incorporated in nanofibrous wound dressings, and exhibited comparable antimicrobial efficacy and cytotoxicity to AgNPs. Further, PLA nanofibers containing highly porous AgMPs exhibited steady silver ion release, at a greater rate of release, than nanofibers containing AgNPs. The replacement of AgNPs with the newly introduced AgMPs overcomes concerns regarding the use of nanoparticles and holds great promise as skin substitutes or wound dressings for infected wound sites
    corecore