771 research outputs found

    Topographic controls on dike injection in volcanic rift zones

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 246 (2006): 188-196, doi:10.1016/j.epsl.2006.04.005.Dike emplacement in volcanic rift zones is often associated with the injection of “bladelike” dikes, which propagate long distances parallel to the rift, but frequently remain trapped at depth and erupt only near the tip of the dike. Over geologic time, this style of dike injection implies that a greater percentage of extension is accommodated by magma accretion at depth than near the surface. In this study, we investigate the evolution of faulting, topography, and stress state in volcanic rift zones using a kinematic model for dike injection in an extending 2-D elastic-viscoplastic layer. We show that the intrusion of blade-like dikes focuses deformation at the rift axis, leading to the formation of an axial rift valley. However, flexure associated with the development of the rift topography generates compression at the base of the plate. If the magnitude of these deviatoric compressive stresses exceeds the deviatoric tensile stress associated with far-field extension, further dike injection will be inhibited. In general, this transition from tensile to compressive deviatoric stresses occurs when the rate of accretion in the lower crust is greater than 50-60% of the far-field extension rate. These results indicate that over geologic time-scales the injection of blade-like dikes is a self-limiting process in which dike-generated faulting and topography result in an efficient feedback mechanism that controls the time-averaged distribution of magma accretion within the crust.Funding for this research was provided by NSF Grants OCE 04-43246, OCE 05-50147, OCE 02-42597 and OCE 04-26575, and a Carnegie Postdoctoral Fellowship to M.B

    First-passage and first-exit times of a Bessel-like stochastic process

    Get PDF
    We study a stochastic process XtX_t related to the Bessel and the Rayleigh processes, with various applications in physics, chemistry, biology, economics, finance and other fields. The stochastic differential equation is dXt=(nD/Xt)dt+2DdWtdX_t = (nD/X_t) dt + \sqrt{2D} dW_t, where WtW_t is the Wiener process. Due to the singularity of the drift term for Xt=0X_t = 0, different natures of boundary at the origin arise depending on the real parameter nn: entrance, exit, and regular. For each of them we calculate analytically and numerically the probability density functions of first-passage times or first-exit times. Nontrivial behaviour is observed in the case of a regular boundary.Comment: 15 pages, 6 figures, submitted to Physical Review

    Role of melt supply in oceanic detachment faulting and formation of megamullions

    Get PDF
    Author Posting. © Geological Society of America, 2008. This article is posted here by permission of Geological Society of America for personal use, not for redistribution. The definitive version was published in Geology 36 (2008): 455-458, doi:10.1130/G24639A.1.Normal faults are ubiquitous on mid-ocean ridges and are expected to develop increasing offset with reduced spreading rate as the proportion of tectonic extension increases. Numerous long-lived detachment faults that form megamullions with large-scale corrugations have been identified on magma-poor mid-ocean ridges, but recent studies suggest, counterintuitively, that they may be associated with elevated magmatism. We present numerical models and geological data to show that these detachments occur when ~30%–50% of total extension is accommodated by magmatic accretion and that there is significant magmatic accretion in the fault footwalls. Under these low-melt conditions, magmatism may focus unevenly along the spreading axis to create an irregular brittle-plastic transition where detachments root, thus explaining the origin of the enigmatic corrugations. Morphological and compositional characteristics of the oceanic lithosphere suggested by this study provide important new constraints to assess the distribution of magmatic versus tectonic extension along mid-ocean ridges.This research was supported by the National Science Foundation and by the Henry Bryant Bigelow Chair in Oceanography to Tucholke at Woods Hole Oceanographic Institution

    Critical Behaviour of Non-Equilibrium Phase Transitions to Magnetically Ordered States

    Full text link
    We describe non-equilibrium phase transitions in arrays of dynamical systems with cubic nonlinearity driven by multiplicative Gaussian white noise. Depending on the sign of the spatial coupling we observe transitions to ferromagnetic or antiferromagnetic ordered states. We discuss the phase diagram, the order of the transitions, and the critical behaviour. For global coupling we show analytically that the critical exponent of the magnetization exhibits a transition from the value 1/2 to a non-universal behaviour depending on the ratio of noise strength to the magnitude of the spatial coupling.Comment: 4 pages, 5 figure

    Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system

    Full text link
    Noise driven electroconvection in sandwich cells of nematic liquid crystals exhibits on-off intermittent behaviour at the onset of the instability. We study laser scattering of convection rolls to characterize the wavelengths and the trajectories of the stochastic amplitudes of the intermittent structures. The pattern wavelengths and the statistics of these trajectories are in quantitative agreement with simulations of the linearized electrohydrodynamic equations. The fundamental τ3/2\tau^{-3/2} distribution law for the durations τ\tau of laminar phases as well as the power law of the amplitude distribution of intermittent bursts are confirmed in the experiments. Power spectral densities of the experimental and numerically simulated trajectories are discussed.Comment: 20 pages and 17 figure

    Do audit fees and audit hours influence credit ratings?: A comparative analysis of Big4 vs Non-Big4

    Get PDF
    We examine the relationship between credit ratings / changes and audit fees (hours) for Big4 and Non-Big4 firms. Audit fee (hours) may be considered as a default risk metric for credit ratings agencies. However, firms audited by Big4 are larger, better performing and operate with lower leverage compared to firms followed by Non-Big4. Therefore, the association between audit fee (hours) may be different for firms followed by Big4 and Non-Big4 audit firms. We find that there is a negative association between audit fees and credit ratings for firms followed by Big4 audit firms. However, we find an insignificant relation for firms followed by Non-Big4. We conjecture the different association due to the Big4 firms having more robust accounting procedures; Big4 firms must offer competitive audit fees because they are engaged in fierce competition with other Big4 firms. Moreover, Big4 and Non-Big4 firms have different relationships with their clients because Non-Big4 firms are more income dependent on their clients. Using a sample of 1,717 firm–year observations between 2002 and 2013, we establish a relation between audit fees in period t and credit ratings in period t+1, for firms followed by Big4 auditors. We do not find a significant relation for firms followed by Non-Nig4 firms, suggesting that credit ratings agencies perceive audit fee differently for Big4 and Non-Big4 firms. Client firms followed by Big4 auditors that experience a credit rating change in period t+1 pay lower audit fees in period t compared to firms that do not experience a credit rating change. Our additional analysis suggests a different association between firms audit fees and firm performance for firms that experience a credit rating increase and decrease. Firms that experience a credit ratings increase in period t+1 have strong performance and lower audit fees in period t. On the other hand, firms that experience a credit rating decrease have weak financial performance and negative audit fees compared to firms that do not experience a credit ratings change. Our results suggest that audit fees combined with financial performance influence a credit ratings agency' perception of default risk

    Connecting competitor, stress-tolerator and ruderal (CSR) theory and Lund Potsdam Jena managed Land 5 (LPJmL 5) to assess the role of environmental conditions, management and functional diversity for grassland ecosystem functions

    Get PDF
    Forage offtake, leaf biomass and soil organic carbon storage are important ecosystem services of permanent grasslands, which are determined by climatic conditions, management and functional diversity. However, functional diversity is not independent of climate and management, and it is important to understand the role of functional diversity and these dependencies for ecosystem services of permanent grasslands, since functional diversity may play a key role in mediating impacts of changing conditions. Large-scale ecosystem models are used to assess ecosystem functions within a consistent framework for multiple climate and management scenarios. However, large-scale models of permanent grasslands rarely consider functional diversity. We implemented a representation of functional diversity based on the competitor, stress-tolerator and ruderal (CSR) theory and the global spectrum of plant form and function into the Lund Potsdam Jena managed Land (LPJmL) dynamic global vegetation model (DGVM) forming LPJmL-CSR. Using a Bayesian calibration method, we parameterised new plant functional types (PFTs) and used these to assess forage offtake, leaf biomass, soil organic carbon storage and community composition of three permanent grassland sites. These are a temperate grassland and a hot and a cold steppe for which we simulated several management scenarios with different defoliation intensities and resource limitations. LPJmL-CSR captured the grassland dynamics well under observed conditions and showed improved results for forage offtake, leaf biomass and/or soil organic carbon (SOC) compared to the original LPJmL 5 version at the three grassland sites. Furthermore, LPJmL-CSR was able to reproduce the trade-offs associated with the global spectrum of plant form and function, and similar strategies emerged independent of the site-specific conditions (e.g. the C and R PFTs were more resource exploitative than the S PFT). Under different resource limitations, we observed a shift in the community composition. At the hot steppe, for example, irrigation led to a more balanced community composition with similar C, S and R PFT shares of aboveground biomass. Our results show that LPJmL-CSR allows for explicit analysis of the adaptation of grassland vegetation to changing conditions while explicitly considering functional diversity. The implemented mechanisms and trade-offs are universally applicable, paving the way for large-scale application. Applying LPJmL-CSR for different climate change and functional diversity scenarios may generate a range of future grassland productivities.</p
    corecore