131 research outputs found

    Focusing of upward fluid migration beneath volcanic arcs : effect of mineral grain size variation in the mantle wedge

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 3905–3923, doi:10.1002/2015GC005950.We use numerical models to investigate the effects of mineral grain size variation on fluid migration in the mantle wedge at subduction zones and on the location of the volcanic arc. Previous coupled thermal-grain size evolution (T-GSE) models predict small grain size (<1 mm) in the corner flow of the mantle wedge, a downdip grain size increase by ∼2 orders of magnitude along the base of the mantle wedge, and finer grain size in the mantle wedge for colder-slab subduction zones. We integrate these T-GSE modeling results with a fluid migration model, in which permeability depends on grain size, and fluid flow through a moving mantle matrix is driven by fluid buoyancy and dynamic pressure gradients induced by mantle flow. Our modeling results indicate that fluids introduced along the base of the mantle wedge beneath the fore arc are initially dragged downdip by corner flow due to the small grain size and low permeability immediately above the slab. As grain size increases with depth, permeability increases, resulting in upward fluid migration. Fluids released beneath the arc and the back arc are also initially dragged downdip, but typically are not transported as far laterally before they begin to travel upward. As the fluids rise through the back-arc mantle wedge, they become deflected toward the trench due to the effect of mantle inflow. The combination of downdip migration in the fore arc and trench-ward migration in the back arc results in pathways that focus fluids beneath the arc.International Research Institute of Disaster Science, Tohoku University; NSF; MARGINS Postdoctoral Fellowship . Grant Number: NSF OCE-08408002016-05-1

    Melting systematics in mid-ocean ridge basalts : application of a plagioclase-spinel melting model to global variations in major element chemistry and crustal thickness

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 120 (2015): 4863–4886, doi:10.1002/2015JB011885.We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid-ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid-ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na8, Fe8, Si8, Ca8/Al8, and K8/Ti8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt).Funding was provided by NSF grants OCE-1458201 (M.D.B) and OCE-1457916 (T.L.G) and to M.D.B by the Deep Ocean Exploration Institute at Woods Hole Oceanographic Institution and the Deep Carbon Observatory.2016-01-2

    The continental drift convection cell

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 4301-4308, doi:10.1002/2015GL064480.Continents on Earth periodically assemble to form supercontinents and then break up again into smaller continental blocks (the Wilson cycle). Previous highly developed numerical models incorporate fixed continents while others indicate that continent movement modulates flow. Our simplified numerical model suggests that continental drift is fundamental. A thermally insulating continent is anchored at its center to mantle flow on an otherwise stress-free surface for infinite Prandtl number cellular convection with constant material properties. Rayleigh numbers exceed 107, while continent widths and chamber lengths approach Earth's values. The Wilson cycle is reproduced by a unique, rugged monopolar “continental drift convection cell.” Subduction occurs at the cell's upstream end with cold slabs dipping at an angle beneath the moving continent (as found in many continent/subduction regions on Earth). Drift enhances vertical heat transport up to 30%, especially at the core-mantle boundary, and greatly decreases lateral mantle temperature differences.Funding was provided by NSF grants EAR-1010432 and EAR-1316333.2015-12-0

    Magmatic and tectonic extension at mid-ocean ridges : 1. Controls on fault characteristics

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.)

    Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks

    Get PDF
    Author Posting. © American Geophysical Union 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 4 (2003): 1041, doi:10.1029/2002GC000393.This study presents a new approach to quantitatively assess the relationship between the composition and seismic P-wave velocity of anhydrous igneous and meta-igneous rocks. We perform thermodynamic calculations of the equilibrating phase assemblages predicted for all igneous composition space at various pressure and temperature conditions. Seismic velocities for each assemblage are then estimated from mixing theory using laboratory measurements of the elastic parameters for pure mineral phases. The resultant velocities are used to derive a direct relationship between Vp and major element composition valid to ±0.13 km/s for pressure and temperature conditions along a normal crustal geotherm in the depth range of 5–50 km and equilibration pressures ≤12 kbar. Finally, we use the calculated velocities to invert for major element chemistry as a function of P-wave velocity assuming only the in situ temperature and pressure conditions are known. Compiling typical velocity-depth profiles for the middle and lower continental and oceanic crust, we calculate compositional bounds for each of these geologic environments. We find that the acceptable compositional range for the middle (15–30 km) and lower continental (≥35 km) crust is broad, ranging from basaltic to dacitic compositions, and conclude that P-wave velocity measurements alone are insufficient to provide fundamental constraints on the composition of the middle and lower continental crust. However, because major oxides are correlated in igneous rocks, joint constraints on Vp and individual oxides can narrow the range of acceptable crustal compositions. In the case of the lower oceanic crust (≥2 km), observed velocities are 0.2–0.3 km/s lower than velocities calculated based on the average bulk composition of gabbros in drill cores and exposed ophiolite sequences. We attribute this discrepancy to a combination of residual porosity at crustal depths less than ∼10 km and hydrous alteration phases in the lower crust, and suggest caution when inferring mantle melting parameters from observed velocities in the lower oceanic crust.This research was supported by National Science Foundation Grants OCE- 9819666, EAR-9910899, and EAR-0087706 (P.B. Kelemen)

    Rapid rotation of normal faults due to flexural stresses : an explanation for the global distribution of normal fault dips

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 3722–3739, doi:10.1002/2013JB010512.We present a mechanical model to explain why most seismically active normal faults have dips much lower (30–60°) than expected from Anderson-Byerlee theory (60–65°). Our model builds on classic finite extension theory but incorporates rotation of the active fault plane as a response to the buildup of bending stresses with increasing extension. We postulate that fault plane rotation acts to minimize the amount of extensional work required to sustain slip on the fault. In an elastic layer, this assumption results in rapid rotation of the active fault plane from ~60° down to 30–45° before fault heave has reached ~50% of the faulted layer thickness. Commensurate but overall slower rotation occurs in faulted layers of finite strength. Fault rotation rates scale as the inverse of the faulted layer thickness, which is in quantitative agreement with 2-D geodynamic simulations that include an elastoplastic description of the lithosphere. We show that fault rotation promotes longer-lived fault extension compared to continued slip on a high-angle normal fault and discuss the implications of such a mechanism for fault evolution in continental rift systems and oceanic spreading centers.This work was supported by NSF grants OCE-1154238 and EAR-1010432.2014-10-2

    The evolution of lithospheric deformation and crustal structure from continental margins to oceanic spreading centers

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2002This thesis investigates the evolution of lithospheric deformation and crustal structure from continental margins to mid-ocean ridges. The first part (Ch. 2) examines the style of segmentation along the U.S. East Coast Margin and investigates the relationship between incipient margin structure and segmentation at the modem Mid-Atlantic Ridge. The second part (Chs. 3-5) focuses on the mechanics of faulting in extending lithosphere. In Ch. 3, I show that the incorporation of a strain-rate softening rheology in continuum models results in localized zones of high strain rate that are not imposed a priori and develop in response to the rheology and boundar conditions. I then use this approach to quantify the effects of thermal state, crustal thickness, and crustal rheology on the predicted style of extension deformation. The mechanics of fault initiation and propagation along mid-ocean ridge segments is investigated in Ch. 4. Two modes of fault development are identified: Mode C faults that initiate near the center of a segment and Mode E faults that initiate at the segment ends. Numerical results from Ch. 5 predict that over time scales longer than a typical earhquake cycle transform faults behave as zones of significant weakness. Furthermore, these models indicate that Mode E faults formed at the inside-comer of a ridge-transform intersection wil experience preferential growth relative to faults formed at the conjugate outside-comer due to their proximity to the weak transform zone. Finally, the last par of this thesis (Ch. 6) presents a new method to quantify the relationship between the seismic velocity and composition of igneous rocks. A direct relationship is derived to relate V p to major element composition and typical velocity-depth profiles are used to calculate compositional bounds for the lower continental, margin, and oceanic crust.Funding was provided by NASA through grants NAG5-3264, NAG5-4806, NAG5-11113, and NAG5-9143, and by a National Defense Science and Engineering Graduate Fellowship

    Mantle heterogeneity and melting processes in the South China Sea: thermal and melting models constrained by oceanic crustal thickness and basalt geochemistry

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(2), (2021): e2020JB020735, https://doi.org/10.1029/2020JB020735.We simulate mantle flow, thermal structure, and melting processes beneath the ridge axis of the South China Sea (SCS), combining the nominally anhydrous melting and fractional crystallization model, to study mantle heterogeneity and basin evolution. The model results are constrained by seismically determined crustal thickness and major element composition of fossil ridge axis basalts. The effects of half-spreading rate, mantle potential temperature, mantle source composition, and the pattern of melt migration on the crustal thickness and magma chemical composition are systematically investigated. For the SCS, the east and southwest (SW) subbasins have comparable crustal thickness, but the east subbasin has higher FeO and Na2O contents compared to the SW subbasin. The estimated best fitting mantle potential temperatures in the east and SW subbasins are 1,360 ± 15 °C and 1,350 ± 25 °C, respectively. The mantle in the east subbasin (site U1431) prior to the cessation of seafloor spreading is composed primarily of the depleted mid-ocean ridge basalt mantle (DMM), and is slightly contaminated by eclogite/pyroxenite-rich component. However, the mantle source composition of the SW subbasin (sites U1433 and U1434) contains a small percentage (2–5%) of lower continental crust. Basalt samples at the northern margin of the east subbasin (site U1500) shows similar chemical characteristics with that of the SW subbasin. We suggest that the basin-scale variability in the mantle heterogeneity of the SCS can be explained by a single model in which the contamination by the lower continental crust is gradually diluted by melting of DMM as the ridge moves away from the rifted margin.This work is supported by National Natural Science Foundation of China (41890813, 91628301), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0205), Chinese Academy of Sciences (Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029), International Exchange Program for Graduate Students of Tongji University (201502, 201801337), Chinese Scholarship Council (201606260207), and US National Science Foundation (OCE-14-58,201). A special acknowledgement should be expressed to China-Pakistan Joint Research Center on Earth Sciences that supports the implementation of this study.2021-07-1

    Using short-term postseismic displacements to infer the ambient deformation conditions of the upper mantle

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophyscial Research 117 (2012): B01409, doi:10.1029/2011JB008562.To interpret short-term postseismic surface displacements in the context of key ambient conditions (e.g., temperature, pressure, background strain rate, water content, creep mechanism), we combined steady state and transient flow into a single constitutive relation that can explain the response of a viscoelastic material to a change in stress. The flow law is then used to investigate mantle deformation beneath the Eastern California Shear Zone following the 1999 M7.1 Hector Mine earthquake. The flow law parameters are determined using finite element models of relaxation processes, constrained by surface displacement time series recorded by 55 continuous GPS stations for 7 years following the earthquake. Results suggest that postseismic flow following the Hector Mine earthquake occurs below a depth of ~50 km and is controlled by dislocation creep of wet olivine. Diffusion creep models can also explain the data, but require a grain size (3.5 mm) that is smaller than the inferred grain size (10–20 mm) based on the mantle conditions at these depths. In addition, laboratory flow laws predict dislocation creep would dominate at the stress/grain size conditions that provide the best fit to diffusion creep models. Model results suggest a transient creep phase that lasts ~1 year and has a viscosity ~10 times lower than subsequent steady state flow, in general agreement with laboratory observations. The postseismic response is best explained as occurring within a relatively hot upper mantle (e.g., 1200–1300°C at 50 km depth) with a long-term background mantle strain rate of 0.1–0.2 μstrain/yr, consistent with the observed surface strain rate. Long-term background shear stresses at the top of the mantle are ~4 MPa, then decrease with depth to a minimum of 0.1–0.2 MPa at 70 km depth before increasing slowly with depth due to the pressure dependence of viscosity. These conditions correspond to a background viscosity of 1021 Pa s within a thin mantle lid that decreases to ~5 × 1019 Pa s within the underlying asthenosphere. This study shows the utility of using short-term postseismic observations to infer long-term mantle conditions that are not readily observable by other means.This work was supported by the National Science Foundation grants EAR-0952234 (A.M.F.), EAR-0810188 (G.H.), and EAR-0854673 (M.D.B.).2012-07-3

    Compositional dependence of lower crustal viscosity

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 8333–8340, doi:10.1002/2015GL065459.We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.Woods Hole Oceanographic Institution Summer Student Fellowship Program; NSF. Grant Numbers EAR-13-16333, EAR-12200752016-04-2
    corecore