125 research outputs found

    Focusing of upward fluid migration beneath volcanic arcs : effect of mineral grain size variation in the mantle wedge

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 3905–3923, doi:10.1002/2015GC005950.We use numerical models to investigate the effects of mineral grain size variation on fluid migration in the mantle wedge at subduction zones and on the location of the volcanic arc. Previous coupled thermal-grain size evolution (T-GSE) models predict small grain size (<1 mm) in the corner flow of the mantle wedge, a downdip grain size increase by ∼2 orders of magnitude along the base of the mantle wedge, and finer grain size in the mantle wedge for colder-slab subduction zones. We integrate these T-GSE modeling results with a fluid migration model, in which permeability depends on grain size, and fluid flow through a moving mantle matrix is driven by fluid buoyancy and dynamic pressure gradients induced by mantle flow. Our modeling results indicate that fluids introduced along the base of the mantle wedge beneath the fore arc are initially dragged downdip by corner flow due to the small grain size and low permeability immediately above the slab. As grain size increases with depth, permeability increases, resulting in upward fluid migration. Fluids released beneath the arc and the back arc are also initially dragged downdip, but typically are not transported as far laterally before they begin to travel upward. As the fluids rise through the back-arc mantle wedge, they become deflected toward the trench due to the effect of mantle inflow. The combination of downdip migration in the fore arc and trench-ward migration in the back arc results in pathways that focus fluids beneath the arc.International Research Institute of Disaster Science, Tohoku University; NSF; MARGINS Postdoctoral Fellowship . Grant Number: NSF OCE-08408002016-05-1

    The continental drift convection cell

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 4301-4308, doi:10.1002/2015GL064480.Continents on Earth periodically assemble to form supercontinents and then break up again into smaller continental blocks (the Wilson cycle). Previous highly developed numerical models incorporate fixed continents while others indicate that continent movement modulates flow. Our simplified numerical model suggests that continental drift is fundamental. A thermally insulating continent is anchored at its center to mantle flow on an otherwise stress-free surface for infinite Prandtl number cellular convection with constant material properties. Rayleigh numbers exceed 107, while continent widths and chamber lengths approach Earth's values. The Wilson cycle is reproduced by a unique, rugged monopolar “continental drift convection cell.” Subduction occurs at the cell's upstream end with cold slabs dipping at an angle beneath the moving continent (as found in many continent/subduction regions on Earth). Drift enhances vertical heat transport up to 30%, especially at the core-mantle boundary, and greatly decreases lateral mantle temperature differences.Funding was provided by NSF grants EAR-1010432 and EAR-1316333.2015-12-0

    Magmatic and tectonic extension at mid-ocean ridges : 1. Controls on fault characteristics

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.)

    Rapid rotation of normal faults due to flexural stresses : an explanation for the global distribution of normal fault dips

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 119 (2014): 3722–3739, doi:10.1002/2013JB010512.We present a mechanical model to explain why most seismically active normal faults have dips much lower (30–60°) than expected from Anderson-Byerlee theory (60–65°). Our model builds on classic finite extension theory but incorporates rotation of the active fault plane as a response to the buildup of bending stresses with increasing extension. We postulate that fault plane rotation acts to minimize the amount of extensional work required to sustain slip on the fault. In an elastic layer, this assumption results in rapid rotation of the active fault plane from ~60° down to 30–45° before fault heave has reached ~50% of the faulted layer thickness. Commensurate but overall slower rotation occurs in faulted layers of finite strength. Fault rotation rates scale as the inverse of the faulted layer thickness, which is in quantitative agreement with 2-D geodynamic simulations that include an elastoplastic description of the lithosphere. We show that fault rotation promotes longer-lived fault extension compared to continued slip on a high-angle normal fault and discuss the implications of such a mechanism for fault evolution in continental rift systems and oceanic spreading centers.This work was supported by NSF grants OCE-1154238 and EAR-1010432.2014-10-2

    The evolution of lithospheric deformation and crustal structure from continental margins to oceanic spreading centers

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2002This thesis investigates the evolution of lithospheric deformation and crustal structure from continental margins to mid-ocean ridges. The first part (Ch. 2) examines the style of segmentation along the U.S. East Coast Margin and investigates the relationship between incipient margin structure and segmentation at the modem Mid-Atlantic Ridge. The second part (Chs. 3-5) focuses on the mechanics of faulting in extending lithosphere. In Ch. 3, I show that the incorporation of a strain-rate softening rheology in continuum models results in localized zones of high strain rate that are not imposed a priori and develop in response to the rheology and boundar conditions. I then use this approach to quantify the effects of thermal state, crustal thickness, and crustal rheology on the predicted style of extension deformation. The mechanics of fault initiation and propagation along mid-ocean ridge segments is investigated in Ch. 4. Two modes of fault development are identified: Mode C faults that initiate near the center of a segment and Mode E faults that initiate at the segment ends. Numerical results from Ch. 5 predict that over time scales longer than a typical earhquake cycle transform faults behave as zones of significant weakness. Furthermore, these models indicate that Mode E faults formed at the inside-comer of a ridge-transform intersection wil experience preferential growth relative to faults formed at the conjugate outside-comer due to their proximity to the weak transform zone. Finally, the last par of this thesis (Ch. 6) presents a new method to quantify the relationship between the seismic velocity and composition of igneous rocks. A direct relationship is derived to relate V p to major element composition and typical velocity-depth profiles are used to calculate compositional bounds for the lower continental, margin, and oceanic crust.Funding was provided by NASA through grants NAG5-3264, NAG5-4806, NAG5-11113, and NAG5-9143, and by a National Defense Science and Engineering Graduate Fellowship

    Compositional dependence of lower crustal viscosity

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 8333–8340, doi:10.1002/2015GL065459.We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.Woods Hole Oceanographic Institution Summer Student Fellowship Program; NSF. Grant Numbers EAR-13-16333, EAR-12200752016-04-2

    Aseismic transient slip on the Gofar transform fault, East Pacific Rise

    Get PDF
    Author Posting. © National Academy of Sciences, 2020. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences (2020): 201913625, doi: 10.1073/pnas.1913625117.Oceanic transform faults display a unique combination of seismic and aseismic slip behavior, including a large globally averaged seismic deficit, and the local occurrence of repeating magnitude (M) ∼6 earthquakes with abundant foreshocks and seismic swarms, as on the Gofar transform of the East Pacific Rise and the Blanco Ridge in the northeast Pacific Ocean. However, the underlying mechanisms that govern the partitioning between seismic and aseismic slip and their interaction remain unclear. Here we present a numerical modeling study of earthquake sequences and aseismic transient slip on oceanic transform faults. In the model, strong dilatancy strengthening, supported by seismic imaging that indicates enhanced fluid-filled porosity and possible hydrothermal circulation down to the brittle–ductile transition, effectively stabilizes along-strike seismic rupture propagation and results in rupture barriers where aseismic transients arise episodically. The modeled slow slip migrates along the barrier zones at speeds ∼10 to 600 m/h, spatiotemporally correlated with the observed migration of seismic swarms on the Gofar transform. Our model thus suggests the possible prevalence of episodic aseismic transients in M ∼6 rupture barrier zones that host active swarms on oceanic transform faults and provides candidates for future seafloor geodesy experiments to verify the relation between aseismic fault slip, earthquake swarms, and fault zone hydromechanical properties.We thank Joan Gomberg, Ruth Harris, Steve Hickman, Shane Detweiler, Mike Diggles, and two anonymous external reviewers for their thoughtful comments that helped to improve the manuscript. This study was supported by Natural Sciences and Engineering Research Council of Canada Discovery Grants RGPIN/418338-2012 and RGPIN-2018-05389; and NSF Grants OCE-10-61203 and OCE-18-33279.2020-10-2
    corecore