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Abstract Continents on Earth periodically assemble to form supercontinents and then break up again into
smaller continental blocks (the Wilson cycle). Previous highly developed numerical models incorporate fixed
continents while others indicate that continent movement modulates flow. Our simplified numerical model
suggests that continental drift is fundamental. A thermally insulating continent is anchored at its center to
mantle flow on an otherwise stress-free surface for infinite Prandtl number cellular convection with constant
material properties. Rayleigh numbers exceed 107, while continent widths and chamber lengths approach
Earth’s values. The Wilson cycle is reproduced by a unique, rugged monopolar “continental drift convection
cell.” Subduction occurs at the cell’s upstream end with cold slabs dipping at an angle beneath the moving
continent (as found in many continent/subduction regions on Earth). Drift enhances vertical heat transport up
to 30%, especially at the core-mantle boundary, and greatly decreases lateral mantle temperature differences.

1. Introduction

Plate tectonics describes our Earth as covered with large rigid plates that move with constant speed driven
primarily by slab subduction with smaller contributions from buoyancy forces at spreading centers and near
hot spots. The continents are swept along within the plates although their presence/absence might
modulate this flow through a combination of thermal insulation and enhanced viscous drag. In this study
we follow the suggestion that continents exert a fundamental influence on convection and specifically
that they self-propel themselves in the presence of mantle convection [Elder, 1967]. This suggestion is
reinforced by a number of studies; in the fluid mechanics literature, including the observation that floating
heaters drift at the top of a laboratory convection chamber [Knopoff, 1969; Howard et al., 1970] and that
thermally insulated floats drift above cellular convection heated from below [Zhang and Libchaber, 2000;
Zhong and Zhang, 2005; Liu and Zhang, 2008; Whitehead et al., 2011, 2014]. Even an adiabatically stratified
viscous fluid with an internally heated surface layer adopts cellular convection with traveling waves that
can break up into continent-like traveling parcels of surface fluid [Busse, 1978; Rasenat et al., 2006]. These
studies all suggest that continents might exert a first-order effect that helps to drive convection.

Numerical models of mantle convection with continents also generally point toward a viewpoint in which
continents help drive convection [Gurnis, 1988; Zhong and Gurnis, 1993; Lowman and Jarvis, 1995, 1996].
Continents are found to contribute to episodic rearrangement of convection cells [King et al., 2002; Koglin
et al., 2005], including the Wilson cycle [Trubitsyn and Rykov, 1995; Rolf et al., 2012], and influence many
aspects of convection below them, including heat flux, temperature enhancement under continents,
aggregation into supercontinents, subsequent dispersal of continents, and plume generation [Guillou and
Jaupart, 1995; Honda et al., 2000; Coltice et al., 2007; Grigné et al., 2007a; Li and Zhong, 2009; O’Neill et al.,
2009; Phillips and Coltice, 2010; Lenardic et al., 2011; Rolf et al., 2012; Cooper et al., 2013; Heron and Lowman,
2014]. Therefore, as models have become more realistic through great advancements, it remains clear that
continents exert some influence but precisely how this happens has become increasingly difficult to quantify.

This study focuses on whether the continents trigger a fundamental new mode of convection or simply
rearrange cells. We use a highly simplified numerical configuration to both qualitatively and quantitatively
examine the role of mobile, thermally insulating continents on cellular convection. Such a simple study is
advantageous in this context because it helps to isolate effects that are obscured when Earth-like
complexities are added to the analysis. Therefore, we stress that we do not attempt to model Earth but
instead ask the following: Is the basic and fundamental form of the convection cells altered by a simplified
continent and in particular by its mobility over a wide range of governing parameters? Further, does the
continent and its mobility generate large changes in parameters such as the magnitude of the heat flow or
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the strength of convection near the continent? And finally, is the internal distribution of temperature altered by
mobility compared to a fixed supercontinent?We find that the answer to all these questions is yes, even though
some other properties such as vertical mean temperature distribution appear to remain unchanged.

2. Methods

Focusing on continent mobility, we abandon a more Earth-like model and do not include temperature- and
stress-dependent rheology within the mantle. We use the simplest possible prototype dynamics and
geometry for convection in the mantle: convection with constant viscosity. Effects of compression are also
ignored, as are phase changes and other Earth-like realistic constraints. The fluid occupies a two-
dimensional chamber of depth D′ and length L′ (the prime denotes a dimensional quantity; unprimed is

dimensionless, so L= L′/D′). Initially, the temperature everywhere is set to T0′+ΔT′, and this is suddenly

changed to T0′ along the top boundary. Equations are made dimensionless using the velocity scale κ′/D′,
temperature scale ΔT ′, time scale D2

′/κ′, and length scale D′, where thermal diffusivity is κ′= k ′/ρ0′Cp′, k′ is
thermal conductivity, average density is ρ0′, and specific heat at constant pressure is Cp′. The dimensionless

equations in the limit Pr= ν′/κ′≫ 1 (Stokes flow with kinematic viscosity ν′) are

∂T
∂t

þ eu �∇T ¼ ∇2T þ h; (1)

∇2ζ ¼ �Ra
∂T
∂x

; and (2)

∇2ψ ¼ ζ ; (3)

where velocity vector is ~u, the dimensionless temperature greater than T0′/ΔT′ is T, vorticity is ζ = ∂w/∂x� ∂u/∂z,
stream function is ψ, and internal heat generation is h=H′D′2/ρ0′Cp′ΔT′with H′ the heat production rate per unit
volume. In addition, u=� ∂ψ/∂z and w= ∂ψ/∂x, where velocity direction and Cartesian coordinates x and z are
positive toward the right and upward, respectively, with origin in the lower left corner. It has only two dynamical
variables; the Rayleigh number Ra= g′α′ΔT′D′3/κ′ν′ (acceleration of gravity is g′, and the linear thermal coefficient
of expansion is α′) and internal heating Rayleigh number Rai=hRa. Two geometric dimensionless numbers
express the rectangular chamber length L= L′/D′ and continent width W=W′/D′.

Initial conditions are ψ = ζ = 0 and T=1 in the interior. For most runs the continent starts on the far right, but
trial runs with other initial locations produce no change in properties reported here. The procedure has
equation (1) advanced numerically in time [Whitehead et al., 2013] using a leapfrog-trapezoidal scheme.
Then equation (2) is solved by inverting the Poisson equation, and equation (3) is solved the same way.
Boundary conditions ψ = ζ = 0 on all boundaries impose zero tangential stress and zero normal flow along
lateral sides, top, and bottom of the chamber. For temperature, the top boundary is set to T=0 except for
locations where the continent is present, in which case the temperature gradient in an external set of grid
points is set to zero (∂T/∂z=0). The importance of limited heat flux at the base of the continents has been
demonstrated by Lenardic et al. [2005, 2011]. The chamber sides have zero lateral heat flux such that ∂T/∂
x=0 resulting in reflective side boundary conditions. The boundary condition for temperature along the
chamber bottom is one of two types. The first is a constant bottom temperature T= Tb=1, so the heat flux
q up through the bottom is determined by the convection. In the special case h= 0, Nusselt number is
used (Nu= q). The second type of bottom boundary condition is zero heat flux ∂T/∂z=0 at z=0 with h= 4,
specified. Here bottom temperature is a free parameter determined by the convection.

We impose zero heat flux along the bottom of the continent. Our numerical algorithm utilizes an external
layer of grid points outside all four boundaries to control heat flow at the chamber surfaces with the
truncation error of O(10�15) rather than at the boundary layer resolution accuracy of O(10�6) or less.

To make the continent drift freely, its lateral speed is set equal to the speed of the flow at its center. This
criterion is a simplification of a more correct principle, which is to set the integral of the viscous stress on a
block-like continent to zero [Gurnis, 1988]. When the continent drifts onto the end of the chamber the
continent speed is set to zero until the speed under the continent reverses. Therefore, the fixed continent
does not exert stress on the fluid and does not directly affect the velocity fields. If the continent is rigidly
attached to the fluid, differences are minor (section 4 in Text S1 in the supporting information).
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3. Results

We report a unique form of convection—the “continental drift convection cell,” which is subsequently called
the “drift cell” for short. The distinct structure, not described previously (Figure 1a), is monopolar with closed
streamlines with the sense of rotation correlated with the continent drift direction instead of bipolar with
both clockwise and counterclockwise circulation. At the propagating front of the drift cell, a cold sinking
(subducting) thermal “slab” plunges under the moving continent near the leading edge with a
downdipping angle. The cold slab provides torque-generating circulation of the proper sense to propel
the continent (see Movies S1 and S2 in the supporting information). The subducting slab and the upper
half of the fluid under the continent move with the continent. Like a solitary wave, the drift cell and
continent move without significantly changing shape. The drift cell overrides ambient cold slabs
associated with conventional convection cells, which join the existing subducting slab and become
stretched and distorted with time. Near the bottom of the chamber, fluid flows from in front of the

Figure 1. The continental drift convection cell. (Figures 1a and 1b) Rai = 1.6 × 106, h = 8,W = 2.5, and L = 32 (more details in
section 1 in Text S1). (a) Side view showing the tilted cold slab dipping under the leading edge of the moving continent
(grey) and the recirculation under the continent. Behind the continent, a small plume from the bottom hot boundary rises.
The stream function is shown by color contours, and every 0.1 temperature isotherm is in black. (b) A more distant view of
the same drift cell. The convection cells on either side of themoving continent are undisturbed. (c) Continent locations with
time. The long record is for the run shown in Figures 1a and 1b, and the short record is for the run shown in Figure 1d. (d)
The drift cell with Rai = 1.6 × 107, h = 8, W = 2.5, and L = 8.
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moving continent toward its rear. Some of these features are visible in previous studies [e.g., Elder, 1967,
Figure 6; Gurnis, 1988, Figure 5].

The drift cell is robust and universal. Its existence does not depend on the initial location of the continent, and
even if a drifting continent is held fixed for a period of time, the drift cell reappears. A continent located at the
exact center of the numerical chamber grid starts with no initial drift, but O(10�15) numerical truncation noise
grows exponentially and initiates drift and the formation of the drift cell (at approximately 0.2 time units for
Rai= 1.6 × 107, h= 8,W=2.5, and L=8). A small off-center additional numerical perturbation initiates the drift
cell even earlier. Therefore, the stationary continent is linearly unstable to drift.

The continental drift cell exists for almost all parameters studied producing long-term cyclic behavior; our ranges
for approximately 80 runs are the following: 1000< Ra< 2×106, h=0, 1, 2, 4, and 8 (up to Rai=1.6×107),W≤ 5,
and L=1, 8, and 32. Figures 1 and 2 show examples with h=8, Figure 3 with h=0, and Figure 4 with h=4 and a
thermally insulated bottom. This includes Ra=1000, and a continent with fixed temperature, and rigid continent.
Calculations (not described here) also show drift for fluids with Pr=1, 10, and 100.

Figure 2. Results for convection with Rai= 1.6 × 106, h= 8, L= 8, and (Figures 2a–2d) W= 2.5. (a) The flow with a fixed
continent at t= 1 (continent shaded) is one long convection cell. Isotherms are black, and colored contours are streamlines.
Surface fluid moves toward the left and returns along the bottom toward the right. Thermals only penetrate to the bottom
and top at the extreme ends. (b) Convection with a moving continent at t= 1.3. Both the drift cell and the continent move
toward the right (arrow). (c) Continent center location, fixed until t= 1 and then drifting. The drift cell forms almost immedi-
ately. (d) Heat flux versus time through the upper and lower boundaries. (e) Continent location for various values of W.
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Movies S1 and S2 (supporting information) show that the drift cell is easy to identify in the long convection
chamber containing many conventional convection cells (Figure 1b). The continent and the drift cell
underneath it move through conventional convection cells, which are reestablished after the continent
passes. Occasionally the drift cell incorporates additional cells in passing (Figures 1d and 2b). The drift
speed is almost constant for each “Wilson cycle” transit except for small changes as ambient convection
cells are engulfed (Figure 1c). The relatively constant speed in the midst of undisturbed ambient cells
shows that the drift cell is not driven by heating near either sidewall or long wavelength convection cells.

The reflective sidewall boundary conditions produce an array of chambers and continents of alternating sign
extending infinitely in both horizontal directions. Thus, the immovable continent at a boundary represents a
supercontinent remaining in place [Grigné et al., 2007b], and the continent drifting from the sidewall
represents a supercontinent splitting apart into two continents. Later, when the drifting continent arrives
at the opposite boundary, a second supercontinent forms. The continent drifting periodically back and
forth behaves like the Wilson cycle with cyclic formation and splitting of supercontinents.

The continental drift cell and continent mobility have important consequences. Some are illustrated by
comparing two conditions: (1) a continent held fixed at the upper right-hand corner of the domain, as in
Lenardic et al. [2005, 2011], and (2) a continent free to drift. The fixed continent (Figure 2a) produces a
large overturning cell with upwelling under the continent and sinking at the opposite end of the chamber.
Most of the sinking plumes move toward the left and reach the bottom at the left end of the tank far
away from the continent. Upwelling occurs in much of the interior of the mantle, especially under the
continent due to the “thermal blanketing” effect observed in previous studies [Gurnis, 1988; Zhong and
Gurnis, 1993; Lowman and Jarvis, 1995, 1996; Lenardic et al., 2005, 2011].

In contrast, the drifting continent and drift cell move back and forth absorbing ambient convection cells as
they travel (Figures 2b and 2c). Movies S1 and S2 in the supporting information show this behavior clearly for
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Figure 3. (a) Nusselt number from upward heat flux averaged over the bottom (dashed red curve) and over the top boundary
(solid black curve) Ra = 2 × 105, h= 0,W= 2.5, and L= 8. (b) Location of the continent center. Continent center location, fixed
until t= 1 and then drifting. Note a less regular trajectory than in Figure 2. (c) Log-log time-averaged Nu versus Ra for fixed
(solid circles) and moving (open circles) continents. Straight lines are fit to the value at Ra = 106 for each case and are
Nu= 0.1354 Ra1/3 for the moving continent and Nu= 0.1075 Ra1/3 for the fixed continent.
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chambers with different aspect ratios. Heat flux q (Figure 2d) with a fixed continent shows little variation with
time, but as soon as drift starts, q increases and temporal variation increases. Drift increases q for all runs with
T=1 at z= 0.

The continental drift cell is sensitive to continent width W (Figure 2e). Drift is relatively steady for W= 5 and
2.5, more random forW= 1.25 and 0.625, and not present for 0.375. This result is in agreement with laboratory
observations of drift for moderate raft sizes, but not small ones [Zhang and Libchaber, 2000; Zhong and Zhang,
2005; Liu and Zhang, 2008]. This implies that small continents might not be associated with steady drift but
instead be passively moved by the great tectonic plates.

The increase in heat flux is most dramatic for h= 0 (in which q =Nu) There is more irregular drift and a
substantial change in Nu after drift commences (Figures 3a and 3b). Time-averaged values are Nu= 6.5 for
0.8< t< 1.0 and Nu=8.4 (29% greater) for 1.8< t< 2.0. The increased heat flux with continent mobility
holds over a wide range of Ra (Figure 3c). The log-log values have slopes close to one third for Ra> 105,
with a prefactor that is 26% greater for continental drift compared to the fixed continent. The factors that
are responsible for q increase with drift seem to be that rising and sinking thermals leave the boundaries
more frequently and at more locations with continent movement. They are also less tilted and less
impeded by shear of the large cell generated by a stationary continent. Both factors result in more
thermals striking the opposite boundary more vigorously and thereby increasing heat flux.

Drift strongly influences other properties of themantle thermal structure in addition to those shown in Figure 3.
For example, the amplitudes of lateral temperature differences changes with drift (Figures 4a and 4b). The
average mantle temperature under a fixed continent is approximately 0.2 above the average mantle
temperature within the sinking region at the chamber’s opposite end (Figure 4c). In contrast, with a moving
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location with t.
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continent (Wilson cycle) the average lateral temperature differences are < 0.1 with peaks during continent
assembly (see section 2 in Text S1). Results shown in Figure 4 have zero bottom heat flow, but similar results
occur with the bottom at T=1 and h=0, 1, 2, 4, and 8.

Other aspects of the temperature distribution within the chamber are less affected by drift. With zero heat
flux boundary condition imposed at the bottom, the horizontally averaged basal temperature at y= 0 is
altered from fixed to drift by only 5%. In addition, the vertical temperature distribution is not sensitive to
drift (supporting information).

4. Discussion

Calculations in the range 104> Rai> 2× 107 universally reveal the existence of a distinct continental drift
convection cell. Instead of a fixed supercontinent producing a large convection cell as in Figure 2a, the
drift cell is localized under the drifting continent as in Figure 1a. The drift cell is rugged and emerges as a
linear instability as found for small chambers [Whitehead et al., 2011, 2014]. Important parameters such as
vertical heat transfer and lateral temperature changes are greatly affected by the drift cell and its
associated continent motion. Heat transfer increases with drift because the drift makes more plentiful
thermals that more efficiently penetrate vertically in the mantle. Lateral temperature changes are smaller
because heat does not have time to build up under a moving continent compared to a stationary one.

Attributing a specific value of Ra to the Earth is not precise because Earth properties vary greatly with pressure,
temperature, and deformation rate. Thus, although Ra=1.6× 107 only approaches the value generally
attributed to Earth (Ra~107–109), we hope this letter will stimulate further calculation at larger values of Ra.

Although our model is sufficiently simple that onemight not expect details resemblingmantle convection on
Earth, remarkably, the drift cell, produces some distinctive features of plate tectonics. For example, the “Ring
of Fire” surrounding the Pacific Ocean is circumscribed by continents and outward dipping subduction zones,
consistent with our result that subduction zones are preferentially located at the leading edge of moving
continents with a dip direction toward the continent (Figure 1). Moreover, the drift cell has subduction
zones moving with the adjacent continent. This is generally true for the Pacific as the ocean basin is
currently closing and the continents (and subduction zones) are migrating together [DeMets et al., 1990].
Also, mantle flow at shallow levels under a continent is directed in the same direction as the continent
motion. Finally, there is a return flow at deep levels beneath the moving continents. These are observed to
some extent within the Earth in global models of instantaneous mantle flow driven by plate motions and
mantle density heterogeneity [Becker et al., 2003; Conrad and Behn, 2010]. However, mantle flow direction
under continents is difficult to verify unambiguously given the three dimensionality of mantle convection
and because of uncertainties in what constitutes the most appropriate absolute reference frame for plate
motions [Becker and Faccenna, 2009]. Not surprisingly, other results in our simple model are not as easily
compared with Earth. For example, our predicted heat flow under the continent varies with the Wilson
cycle (Figures 2d and 3a), but such a correlation is unclear for Earth, although similar results are suggested
by Rolf et al. [2012].

Some results here agree with other studies and some do not. The decrease in lateral mantle temperatures
with drift that is found here is also observed in simulations with moving continents [Lenardic et al., 2011],
and with assembling and dispersing continents [Rolf et al., 2012]. Fixed continents with insulating
boundary conditions rather than stress conditions are also known to generate warmer mantle beneath
them, but the effect is alleviated by temperature-dependent viscosity and with greater Ra [Lenardic et al.,
2011]. In contrast, our results show an increase in heat flow with a continent, while some realistic mantle
convection models do not [Lenardic et al., 2005, 2011]. Moreover, we note that there is no mention of the
presence of subduction under the leading edge of continents in the numerical models cited in section 1
and in the laboratory [Zhang and Libchaber, 2000; Zhong and Zhang, 2005; Liu and Zhang, 2008]. Also, very
little is known about the effects of continents on heat flow out of the core (Figure 4).

Since the present study is too simplified to apply to Earth, the primary purpose of this letter is to motivate
additional studies. More observations are of course, most welcome. Additional laboratory and numerical
studies are needed with mobile continents, realistic Earth properties, and spherical geometries to answer
the following outstanding questions: Does flow under the continents with Earth-like viscosity structures
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resemble the monopolar continental drift convection cell with subduction under the leading edge? Does the
Wilson cycle affect lateral variations in mantle structure? Does the Wilson cycle increase the rate of heat
transfer from both the core and mantle as found here?
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