78 research outputs found

    Data-driven Spectroscopy of Cool Stars at High Spectral Resolution

    Get PDF
    The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining stellar properties ("labels," i.e., physical parameters and elemental abundances). However, traditional spectroscopic methods that utilize stellar models struggle to reproduce cool (< 4700 K) stellar atmospheres due to an abundance of unconstrained molecular transitions, making modeling via synthetic spectral libraries difficult. Because small, cool stars such as K and M dwarfs are both common and good targets for finding small, cool planets, establishing precise spectral modeling techniques for these stars is of high priority. To address this, we apply The Cannon, a data-driven method of determining stellar labels, to Keck High Resolution Echelle Spectrometer spectra of 141 cool (< 5200 K) stars from the California Planet Search. Our implementation is capable of predicting labels for small (< 1 R_⊙) stars of spectral types K and later with accuracies of 68 K in effective temperature (T_(eff)), 5% in stellar radius (R_*), and 0.08 dex in bulk metallicity ([Fe/H]), and maintains this performance at low spectral resolutions (R < 5000). As M dwarfs are the focus of many future planet-detection surveys, this work can aid efforts to better characterize the cool star population and uncover correlations between cool star abundances and planet occurrence for constraining planet formation theories

    Planet Engulfment Detections are Rare According to Observations and Stellar Modeling

    Full text link
    Dynamical evolution within planetary systems can cause planets to be engulfed by their host stars. Following engulfment, the stellar photosphere abundance pattern will reflect accretion of rocky material from planets. Multi-star systems are excellent environments to search for such abundance trends because stellar companions form from the same natal gas cloud and are thus expected to share primordial chemical compositions to within 0.03-0.05 dex. Abundance measurements have occasionally yielded rocky enhancements, but few observations targeted known planetary systems. To address this gap, we carried out a Keck-HIRES survey of 36 multi-star systems where at least one star is a known planet host. We found that only HAT-P-4 exhibits an abundance pattern suggestive of engulfment, but is more likely primordial based on its large projected separation (30,000 ±\pm 140 AU) that exceeds typical turbulence scales in molecular clouds. To understand the lack of engulfment detections among our systems, we quantified the strength and duration of refractory enrichments in stellar photospheres using MESA stellar models. We found that observable signatures from 10 MM_{\oplus} engulfment events last for \sim90 Myr in 1 MM_{\odot} stars. Signatures are largest and longest lived for 1.1-1.2 MM_{\odot} stars, but are no longer observable \sim2 Gyr post-engulfment. This indicates that engulfment will rarely be detected in systems that are several Gyr old.Comment: 15 pages, 12 figures; submitted to MNRA

    Data-driven Spectroscopy of Cool Stars at High Spectral Resolution

    Get PDF
    The advent of large-scale spectroscopic surveys underscores the need to develop robust techniques for determining stellar properties ("labels," i.e., physical parameters and elemental abundances). However, traditional spectroscopic methods that utilize stellar models struggle to reproduce cool (< 4700 K) stellar atmospheres due to an abundance of unconstrained molecular transitions, making modeling via synthetic spectral libraries difficult. Because small, cool stars such as K and M dwarfs are both common and good targets for finding small, cool planets, establishing precise spectral modeling techniques for these stars is of high priority. To address this, we apply The Cannon, a data-driven method of determining stellar labels, to Keck High Resolution Echelle Spectrometer spectra of 141 cool (< 5200 K) stars from the California Planet Search. Our implementation is capable of predicting labels for small (< 1 R_⊙) stars of spectral types K and later with accuracies of 68 K in effective temperature (T_(eff)), 5% in stellar radius (R_*), and 0.08 dex in bulk metallicity ([Fe/H]), and maintains this performance at low spectral resolutions (R < 5000). As M dwarfs are the focus of many future planet-detection surveys, this work can aid efforts to better characterize the cool star population and uncover correlations between cool star abundances and planet occurrence for constraining planet formation theories

    The California-Kepler survey. X. The radius gap as a function of stellar mass, metallicity, and age

    Get PDF
    In 2017, the California-Kepler Survey (CKS) published its first data release (DR1) of high-resolution optical spectra of 1305 planet hosts. Refined CKS planet radii revealed that small planets are bifurcated into two distinct populations, super-Earths (smaller than 1.5 R⊕) and sub-Neptunes (between 2.0 and 4.0 R⊕), with few planets in between (the "radius gap"). Several theoretical models of the radius gap predict variation with stellar mass, but testing these predictions is challenging with CKS DR1 due to its limited M⋆ range of 0.8–1.4 M⊙. Here we present CKS DR2 with 411 additional spectra and derived properties focusing on stars of 0.5–0.8 M⊙. We found that the radius gap follows Rp ∝ Pm with m = −0.10 ± 0.03, consistent with predictions of X-ray and ultraviolet- and core-powered mass-loss mechanisms. We found no evidence that m varies with M⋆. We observed a correlation between the average sub-Neptune size and M⋆. Over 0.5–1.4 M⊙, the average sub-Neptune grows from 2.1 to 2.6 R⊕, following RpMα{R}_{p}\propto {M}_{\star }^{\alpha } with α = 0.25 ± 0.03. In contrast, there is no detectable change for super-Earths. These M⋆–Rp trends suggest that protoplanetary disks can efficiently produce cores up to a threshold mass of Mc, which grows linearly with stellar mass according to Mc ≈ 10 M⊕(M⋆/M⊙). There is no significant correlation between sub-Neptune size and stellar metallicity (over −0.5 to +0.5 dex), suggesting a weak relationship between planet envelope opacity and stellar metallicity. Finally, there is no significant variation in sub-Neptune size with stellar age (over 1–10 Gyr), which suggests that the majority of envelope contraction concludes after ∼1 Gyr

    Planetesimals around stars with TESS (PAST) – I. Transient dimming of a binary solar analogue at the end of the planet accretion era

    Get PDF
    We report detection of quasi-periodic (1.5-d) dimming of HD 240779, the solar-mass primary in a 5 arcsec visual binary (also TIC 284730577), by the Transiting Exoplanet Survey Satellite. This dimming, as has been shown for other ‘dipper’ stars, is likely due to occultation by circumstellar dust. The barycentric space motion, lithium abundance, rotation, and chromospheric emission of the stars in this system point to an age of ≈125 Myr, and possible membership in the AB Doradus moving group. As such it occupies an important but poorly explored intermediate regime of stars with transient dimming between young stellar objects in star-forming regions and main-sequence stars, and between UX Orionis-type Ae/Be stars and M-type ‘dippers’. HD 240779, but not its companion BD+10 714B, has Wide-field Infrared Survey Explorer (WISE)-detected excess infrared emission at 12 and 22 μm indicative of circumstellar dust. We propose that infrared emission is produced by collisions of planetesimals during clearing of a residual disc at the end of rocky planet formation, and that quasi-periodic dimming is produced by the rapid disintegration of a ≳100 km planetesimal near the silicate evaporation radius. Further studies of this and similar systems will illuminate a poorly understood final phase of rocky planet formation like that which produced the inner Solar system

    The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades

    Get PDF
    We present a high-precision radial velocity (RV) survey of 719 FGKM stars, which host 164 known exoplanets and 14 newly discovered or revised exoplanets and substellar companions. This catalog updated the orbital parameters of known exoplanets and long-period candidates, some of which have decades-longer observational baselines than they did upon initial detection. The newly discovered exoplanets range from warm sub-Neptunes and super-Earths to cold gas giants. We present the catalog sample selection criteria, as well as over 100,000 radial velocity measurements, which come from the Keck-HIRES, APF-Levy, and Lick-Hamilton spectrographs. We introduce the new RV search pipeline RVSearch that we used to generate our planet catalog, and we make it available to the public as an open-source Python package. This paper is the first study in a planned series that will measure exoplanet occurrence rates and compare exoplanet populations, including studies of giant planet occurrence beyond the water ice line, and eccentricity distributions to explore giant planet formation pathways. We have made public all radial velocities and associated data that we use in this catalog.Comment: Accepted to ApJ

    Overfitting Affects the Reliability of Radial Velocity Mass Estimates of the V1298 Tau Planets

    Full text link
    Mass, radius, and age measurements of young (<100 Myr) planets have the power to shape our understanding of planet formation. However, young stars tend to be extremely variable in both photometry and radial velocity, which makes constraining these properties challenging. The V1298 Tau system of four ~0.5 Rjup planets transiting a pre-main sequence star presents an important, if stress-inducing, opportunity to directly observe and measure the properties of infant planets. Su\'arez-Mascare\~no et al. (2021) published radial-velocity-derived masses for two of the V1298 Tau planets using a state-of-the-art Gaussian Process regression framework. The planetary densities computed from these masses were surprisingly high, implying extremely rapid contraction after formation in tension with most existing planet formation theories. In an effort to further constrain the masses of the V1298 Tau planets, we obtained 36 RVs using Keck/HIRES, and analyzed them in concert with published RVs and photometry. Through performing a suite of cross validation tests, we found evidence that the preferred model of SM21 suffers from overfitting, defined as the inability to predict unseen data, rendering the masses unreliable. We detail several potential causes of this overfitting, many of which may be important for other RV analyses of other active stars, and recommend that additional time and resources be allocated to understanding and mitigating activity in active young stars such as V1298 Tau.Comment: 26 pages, 12 figures; published in A

    The TESS-Keck Survey: Science Goals and Target Selection

    Full text link
    Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.Comment: 23 pages, 10 figures, 5 table

    Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827

    Get PDF
    HD 106315 and GJ 9827 are two bright, nearby stars that host multiple super-Earths and sub-Neptunes discovered by K2 that are well suited for atmospheric characterization. We refined the planets' ephemerides through Spitzer transits, enabling accurate transit prediction required for future atmospheric characterization through transmission spectroscopy. Through a multiyear high-cadence observing campaign with Keck/High Resolution Echelle Spectrometer and Magellan/Planet Finder Spectrograph, we improved the planets' mass measurements in anticipation of Hubble Space Telescope transmission spectroscopy. For GJ 9827, we modeled activity-induced radial velocity signals with a Gaussian process informed by the Calcium II H&K lines in order to more accurately model the effect of stellar noise on our data. We measured planet masses of M_b = 4.87 ± 0.37 M_⊕, M_c = 1.92 ± 0.49 M_⊕, and M_d = 3.42 ± 0.62 M_⊕. For HD 106315, we found that such activity radial velocity decorrelation was not effective due to the reduced presence of spots and speculate that this may extend to other hot stars as well (T_(eff) > 6200 K). We measured planet masses of M_b = 10.5 ± 3.1 M_⊕ and M_c = 12.0 ± 3.8 M_⊕. We investigated all of the planets' compositions through comparison of their masses and radii to a range of interior models. GJ 9827 b and GJ 9827 c are both consistent with a 50/50 rock-iron composition, GJ 9827 d and HD 106315 b both require additional volatiles and are consistent with moderate amounts of water or hydrogen/helium, and HD 106315 c is consistent with a ~10% hydrogen/helium envelope surrounding an Earth-like rock and iron core
    corecore