2,349 research outputs found

    Structural modifications leading to changes in supramolecular aggregation of thiazolo3, 2-apyrimidines: Insights into their conformational features

    Get PDF
    The compounds, 7-methyl-3,5-diphenyl-5H-thiazolo3,2-apyrimidine-6-carboxylic acid ethyl ester (1), 3-amino-2-cyano-7-methyl-5-phenyl-5H-thiazolo3,2-apyrimidine-6-carboxylic acid methyl ester (2), 2-dimethylaminomethylene-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo3,2-apyrimidine-6-carboxylic acid ethyl ester (3), 2-(3-cyano-benzylidene)-5-(4-hydroxy-phenyl)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo3,2-apyrimidine-6-carboxylic acid methyl ester; with N,N-dimethyl-formamide (4) and 3-ethoxycarbonylmethyl-5-(4-hydroxy-3-methoxy-phenyl)-7-methyl-5H-thiazolo3,2-apyrimidine-6-carboxylic acid methyl ester (5) have been synthesized and their structures evaluated crystallographically. Compound 1 crystallizes in the space group PI with Z=8, with four molecules in the asymmetric unit. Compound 2 also crystallizes in the space group PI with Z=4 wherein asymmetric unit accommodates two molecules. Compound 3 belongs to P21/c with Z=4, compound 4 crystallizes in Pbc2 1 with Z=4 and compound 5 belongs to PI with Z=2. In all the above compounds, the aryl ring positioned at C5 of thiazolopyrimidine ring is almost perpendicular. In the case of compounds with substituted phenyl ring, aryl group-up conformation predominates. However, for compounds with unsubstituted phenyl ring, aryl group-down conformation is adopted. By varying the substituents at positions C2, C3, C6 and on the aryl at C5 in the main molecular scaffold of (1-5), we have observed significant differences in the intermolecular interaction patterns. The packing features of the compounds are controlled by C-H...O, C-H...N, N-H...N O-H...N, C-H...� and �...� weak interactions. © 2014 Indian Academy of Sciences

    Synthesis and x-ray crystal structure of a CuII-theophylline complex: [Cu(theo)2 (H2O)3]·2H2O

    Get PDF
    The complex [Cu-II (theo)(2)(H2O)(3)].2H(2)O (theo = theophylline) was obtained from aqueous solution. The crystals belong to the monoclinic system, space group P2(1)/n, and are reflection twins about the (001) face. The structure was solved using data from a twinned crystal and refined to final R and R(W) values of 0.069 and 0.064, respectively. Copper has a square-pyramidal coordination with two thee molecules coordinating through N(7) at equatorial positions. The remaining sites are occupied by water molecules. O(6) of one of the thee molecules is at the other axial site at a longer distance of 3.18 Angstrom. This could lead to an alternate (4+1+1) octahedral coordination geometry for Cu-II. The packing is stabilized by stacking interactions between the theophylline moieties at an average separation of 3.46 Angstrom

    Structural Modifications Leading to Changes in Supramolecular Aggregation of Thiazolo[3, 2-A]Pyrimidines: Insights into their Conformational Features

    Get PDF
    The compounds, 7-methyl-3,5-diphenyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester (1), 3-amino-2-cyano-7-methyl-5-phenyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid methyl ester (2), 2-dimethylaminomethylene-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine- 6-carboxylic acid ethyl ester (3), 2-(3-cyano-benzylidene)-5-(4-hydroxy-phenyl)-7-methyl-3-oxo-2,3- dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid methyl ester; with N,N-dimethyl-formamide (4) and 3-ethoxycarbonylmethyl-5-(4-hydroxy-3-methoxy-phenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidine-6- carboxylic acid methyl ester (5) have been synthesized and their structures evaluated crystallographically. Compound 1 crystallizes in the space group P¯i with Z=8, with four molecules in the asymmetric unit. Compound 2 also crystallizes in the space group P¯i with Z=4 wherein asymmetric unit accommodates two molecules. Compound 3 belongs to P21/c with Z=4, compound 4 crystallizes in Pbc21 with Z= 4 and compound 5 belongs to P¯i with Z=2. In all the above compounds, the aryl ring positioned at C5 of thiazolopyrimidine ring is almost perpendicular. In the case of compounds with substituted phenyl ring, aryl group-up conformation predominates. However, for compounds with unsubstituted phenyl ring, aryl group-down conformation is adopted. By varying the substituents at positions C2, C3, C6 and on the aryl at C5 in the main molecular scaffold of (1-5), we have observed significant differences in the intermolecular interaction patterns. The packing features of the compounds are controlled by C-H…O, C-H…N, N-H…N O-H…N, C-H…p and p…p weak interactions

    Methyl 5-(4-hy­droxy-3-meth­oxy­phen­yl)-2-(4-meth­oxy­benzyl­idene)-7-methyl-3-oxo-2,3-dihydro-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

    Get PDF
    In the title compound, C24H22N2O6S, a pyrimidine ring substituted with 4-hy­droxy-3-meth­oxy­phenyl is fused with a thia­zole ring. The 4-hy­droxy-3-meth­oxy­phenyl group is positioned axially to the pyrimidine ring, making a dihedral angle 85.36 (7)°. The pyrimidine ring adopts a twist boat conformation. In the crystal, O—H⋯N inter­actions result in a chain running along the b axis. The carbonyl O atom bonded to the thia­zole ring is involved in two C—H⋯O hydrogen-bond inter­actions forming centrosymmetric dimers; the ten- and six-membered rings resulting from these inter­actions have R 2 2(10) and R 1 2(6) motifs, respectively

    Methyl 4-(4-hydroxyphenyl)-6-methyl-2-sulfanylidene-1,2,3,4- tetrahydropyrimidine-5-carboxylate

    Get PDF
    In the title mol­ecule, C13H14N2O3S, the di­hydro­pyrimidine ring is in a flattened sofa conformation, with the methine C atom forming the flap. The dihedral angle between the mean plane of the five essentially planar atoms of the di­hydro­pyrimidine ring [maximum deviation = 0.056 (4) Å] and the benzene ring is 89.4 (2)°. The O atom of the carbonyl group is in a trans conformation with respect to the C=C bond of the di­hydro­pyrimidine ring. In the crystal, N-H...O and O-H...S hydrogen bonds connect mol­ecules, forming a two-dimensional network parallel to (001)

    Crystal structure of ethyl 5-(3-fluoro-phen-yl)-2-[(4-fluoro-phen-yl)methyl-idene]-7-methyl-3-oxo-2H,3H,5H-[1,3]thia-zolo[3,2-a]pyrimidine-6-carboxyl-ate.

    Get PDF
    In the title mol-ecule, C23H18F2N2O3S, the pyrimidine ring is in a half-chair conformation and the 3-fluoro-phenyl group is in the axial position. The thia-zole ring (r.m.s. deviation = 0.0252 Å) forms dihedral angles of 84.8 (7) and 9.6 (7)° with the 3-fluoro-substituted and 4-fluoro-substituted benzene rings, respectively. In the crystal, weak C-H⋯F and C-H⋯O hydrogen bonds connect mol-ecules, forming zigzag chains along the b axis. In addition π-π stacking inter-actions with a centroid-centroid distance of 3.7633 (9) Å connect these chains into ladders via inversion-related 4-fluoro-phenyl groups

    Diversity of Phytoplankton and Pollution Tolerant Species of Navule Pond, Shivamogga, Karnataka

    Get PDF
    The present study deals with phytoplankton population of Navule pond in Shivamogga during September 2014 to August 2015. Blue-greens constituted the major group (41.75%) followed by Chlorococcalas (36.68%), Diatoms (13.36%), euglenoids (7.35%) and Desmids (0.86%). The phytoplankton community was composed of 11 species of Blue-greens, 20 species of Chlorococcales, 18 species of Diatoms, 11 species of Euglenoids and 08 species of Desmids. Each group of phytoplankton showed different peak periods, the summer season produces relatively more phytoplankton than rainy and winter season. The variations in physico-chemical parameters are responsible for the fluctuation of quantity of phytoplankton.  The dominant genera recorded on the pond were Anabaenopsis sp., Ocillatoria sp., Euglena sp., and Phacus. Some of the pollution tolerant species identified during the present study are Scenedesmusquadricauda, Coelastrum sp., Tetraedonmuticum, Ocillatoria sp., Phormidium sp., Microcystis sp., Anabaena sp., Navicula sp., Synedra ulna, Cyclotella sp., and Pinnularia sp. In the present study Microcystisaeroginosa was recorded indicates the civic pollution

    Synthesis, Characterization and Biological Evaluationof Thiazolopyrimidine Derivatives

    Get PDF
    Different substituted diesters of thiazolopyrimidine were prepared by the treatment of 3,4 dihydropyrimidine2-thione with á-haloesters using ethanol under reflux condition affording 71–85% yield. IR, 1HNMR, 13CNMR and elemental analyses were used for the characterization of these compounds. The crystal and molecular structure of one of the product, 5-phenyl-3,7-dimethyl-5H- hiazolo[3,2-a]pyrimidine-2,6- dicarboxylic acid diethyl ester (3e) was verified by single crystal X-ray diffraction method. The antimicrobial activity was evaluated against four bacterial strains and one fungal species. Few of the derivatives exhibited antibacterial and antifungal activities

    Acute Administration of Bioavailable Curcumin Alongside Ferrous Sulphate Supplements Does Not Impair Iron Absorption in Healthy Adults in a Randomised Trial.

    Get PDF
    Ferrous sulphate (FS) is a cost effective, readily available iron supplement for iron deficiency (ID). The pro-oxidant effect of oral ferrous iron is known to induce inflammation, causing gastric side-effects and resulting in poor compliance. Curcumin is a potent antioxidant and has also been shown to exhibit iron chelation in-vitro, although it is not established whether these effects are retained in-vivo. The aim of this study was therefore to assess the influence of a formulated bioavailable form of curcumin (HydroCurc ; 500 mg) on acute iron absorption and status in a double blind, placebo-controlled randomized trial recruiting 155 healthy participants (79 males; 26.42 years ± 0.55 and 76 females; 25.82 years ± 0.54). Participants were randomly allocated to five different treatment groups: iron and curcumin placebo (FS0_Plac), low dose (18 mg) iron and curcumin placebo (FS18_Plac), low dose iron and curcumin (FS18_Curc), high dose (65 mg) iron and curcumin placebo (FS65_Plac), and high dose iron and curcumin (FS65_Curc). Participants were provided with the supplements according to their relevant treatment groups at baseline (0 min), and blood collection was carried out at 0 min and at 180 min following supplementation. In the treatment groups, significant difference was observed in mean serum iron between baseline (0 min) and at end-point (180 min) (F (1, 144) = 331.9, < 0.0001) with statistically significant intra-group increases after 180 min ( < 0.0001) in the FS18_Plac (8.79 µmol/L), FS18_Curc (11.41 µmol/L), FS65_Plac (19.09 µmol/L), and FS65_Curc (16.39 µmol/L) groups. A significant difference was also observed between the two time points in serum TIBC levels and in whole blood haemoglobin (HGB) in the treatment groups, with a significant increase (1.55%/2.04 g/L) in HGB levels from baseline to end-point observed in the FS65_Curc group ( < 0.05). All groups receiving iron demonstrated an increase in transferrin saturation (TS%) in a dose-related manner, demonstrating that increases in serum iron are translated into increases in physiological iron transportation. This study demonstrates, for the first time, that regardless of ferrous dose, formulated curcumin in the form of HydroCurc™ does not negatively influence acute iron absorption in healthy humans
    corecore