26 research outputs found

    Morning Plasma Melatonin Differences in Autism: Beyond the Impact of Pineal Gland Volume

    Get PDF
    While low plasma melatonin, a neuro-hormone synthesized in the pineal gland, has been frequently associated with autism, our understanding of the mechanisms behind it have remained unclear. In this exploratory study, we hypothesized that low melatonin levels in ASD could be linked to a decrease of the pineal gland volume (PGV). PGV estimates with magnetic resonance imaging (MRI) with a voxel-based volumetric measurement method and early morning plasma melatonin levels were evaluated for 215 participants, including 78 individuals with ASD, 90 unaffected relatives, and 47 controls. We first found that both early morning melatonin level and PGV were lower in patients compared to controls. We secondly built a linear model and observed that plasma melatonin was correlated to the group of the participant, but also to the PGV. To further understand the relationship between PGV and melatonin, we generated a normative model of the PGV relationship with melatonin level based on control participant data. We found an effect of PGV on normalized melatonin levels in ASD. Melatonin deficit appeared however more related to the group of the subject. Thus, melatonin variations in ASD could be mainly driven by melatonin pathway dysregulation

    Enhancing studies of the connectome in autism using the autism brain imaging data exchange II

    Get PDF
    The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity

    Neuroanatomical Diversity of Corpus Callosum and Brain Volume in Autism: Meta-analysis, Analysis of the Autism Brain Imaging Data Exchange Project, and Simulation.

    Get PDF
    International audienceBackground:Patients with autism have been often reported to have a smaller corpus callosum (CC) than control subjects.Methods:We conducted a meta-analysis of the literature, analyzed the CC in 694 subjects of the Autism Brain Imaging Data Exchange project, and performed computer simulations to study the effect of different analysis strategies.Results:Our meta-analysis suggested a group difference in CC size; however, the studies were heavily underpowered (20% power to detect Cohen's d = .3). In contrast, we did not observe significant differences in the Autism Brain Imaging Data Exchange cohort, despite having achieved 99% power. However, we observed that CC scaled nonlinearly with brain volume (BV): large brains had a proportionally smaller CC. Our simulations showed that because of this nonlinearity, CC normalization could not control for eventual BV differences, but using BV as a covariate in a linear model would. We also observed a weaker correlation of IQ and BV in cases compared with control subjects. Our simulations showed that matching populations by IQ could then induce artifactual BV differences.Conclusions:The lack of statistical power in the previous literature prevents us from establishing the reality of the claims of a smaller CC in autism, and our own analyses did not find any. However, the nonlinear relationship between CC and BV and the different correlation between BV and IQ in cases and control subjects may induce artifactual differences. Overall, our results highlight the necessity for open data sharing to provide a more solid ground for the discovery of neuroimaging biomarkers within the context of the wide human neuroanatomical diversity

    Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder

    No full text
    International audienceInconsistencies across studies investigating subcortical correlates of autism spectrum disorder (ASD) may stem from small sample size, sample heterogeneity, and omitting or linearly adjusting for total brain volume (TBV). To properly adjust for TBV, brain allometry-the nonlinear scaling relationship between regional volumes and TBV-was considered when examining subcortical volumetric differences between typically developing (TD) and ASD individuals. Autism Brain Imaging Data Exchange I (ABIDE I; N = 654) data was analyzed with two methodological approaches: univariate linear mixed effects models and multivariate multiple group confirmatory factor analyses. Analyses were conducted on the entire sample and in subsamples based on age, sex, and full scale intelligence quotient (FSIQ). A similar ABIDE I study was replicated and the impact of different TBV adjustments on neuroanatomical group differences was investigated. No robust subcortical allometric or volumetric group differences were observed in the entire sample across methods. Exploratory analyses suggested that allometric scaling and volume group differences may exist in certain subgroups defined by age, sex, and/or FSIQ. The type of TBV adjustment influenced some reported volumetric and scaling group differences. This study supports the absence of robust volumetric differences between ASD and TD individuals in the investigated volumes when adjusting for brain allometry, expands the literature by finding no group difference in allometric scaling, and further suggests that differing TBV adjustments contribute to the variability of reported neuroanatomical differences in ASD. K E Y W O R D S allometry, autism spectrum disorder, subcortical volumes, total brain volum

    Sleep in youth with Autism Spectrum Disorders: systematic review and meta-analysis

    No full text
    Questions: sleep problems are common and impairing in individuals with autism spectrum disorders (ASD). Evidence synthesis including both subjective (i.e., measured with questionnaires) and objective (i.e., quantified with neurophysiologic tools) sleep alterations in youth with ASD is currently lacking. Therefore, we conducted a systematic review and meta-analysis of subjective and objective studies sleep studies in youth with ASD. Study selection and analysis: we searched the following electronic databases with no language, date, or type of document restriction, up to May 23rd, 2018: Pubmed, PsycInfo, Embase+Embase Classic, Ovid Medline, and Web of Knowledge. Random-effects models were used. Heterogeneity was assessed with Cochran's Q and I2 statistics. Publication (small studies) bias was assessed with final plots and the Egger’s test. Study quality was evaluated with the Newcastle Ottawa Scale. Analyses were conducted using Review Manager and Comprehensive meta-analysis. Findings: from a pool of 3,359 non-duplicate potentially relevant references, 47 datasets were included in the meta-analyses. Subjective and objective sleep outcome measures were extracted from 37 and 15 studies, respectively. Only five studies were based on comorbidity free, medication-naïve participants. Compared to typically developing controls, youth with ASD significantly differed in 10/14 subjective parameters and in 7/14 objective sleep parameters. The average quality score in the Newcastle-Ottawa scale was 5.9/9. CONCLUSIONS: A number of subjective and, to a less extent, objective sleep alterations might characterise youth with ASD, but future studies should assess the impact of pharmacological treatment and psychiatric comorbidities

    Cerebellar Volume in Autism: Literature Meta-analysis and Analysis of the Autism Brain Imaging Data Exchange Cohort

    No full text
    International audienceBACKGROUND:The neuroanatomical bases of autism spectrum disorder remain largely unknown. Among the most widely discussed candidate endophenotypes, differences in cerebellar volume have been often reported as statistically significant.METHODS:We aimed at objectifying this possible alteration by performing a systematic meta-analysis of the literature and an analysis of the ABIDE (Autism Brain Imaging Data Exchange) cohort. Our meta-analysis sought to determine a combined effect size of autism spectrum disorder diagnosis on different measures of the cerebellar anatomy as well as the effect of possible factors of variability across studies. We then analyzed the cerebellar volume of 328 patients and 353 control subjects from the ABIDE project.RESULTS:The meta-analysis of the literature suggested a weak but significant association between autism spectrum disorder diagnosis and increased cerebellar volume (p = .049, uncorrected), but the analysis of ABIDE did not show any relationship. The studies meta-analyzed were generally underpowered; however, the number of statistically significant findings was larger than expected.CONCLUSIONS:Although we could not provide a conclusive explanation for this excess of significant findings, our analyses would suggest publication bias as a possible reason. Finally, age, sex, and IQ were important sources of cerebellar volume variability, although independent of autism diagnosis

    Cerebellar volume in autism: Meta-analysis and analysis of the ABIDE cohort

    No full text
    accepted in Biological PsychiatryCerebellar volume abnormalities have been often suggested as a possible endophenotype for autism spectrum disorder (ASD). We aimed at objectifying this possible alteration by performing a systematic meta-analysis of the literature, and an analysis of the Autism Brain Imaging Data Exchange (ABIDE) cohort. Our meta-analysis sought to determine a combined effect size of ASD diagnosis on different measures of the cerebellar anatomy, as well as the effect of possible factors of variability across studies. We then analysed the cerebellar volume of 328 patients and 353 controls from the ABIDE project. The meta-analysis of the literature suggested a weak but significant association between ASD diagnosis and increased cerebellar volume (p=0.049, uncorrected), but the analysis of ABIDE did not show any relationship. The studies in the literature were generally underpowered, however, the number of statistically significant findings was larger than expected. Although we could not provide a conclusive explanation for this excess of significant findings, our analyses would suggest publication bias as a possible reason. Finally, age, sex and IQ were important sources of cerebellar volume variability, however, independent of autism diagnosis

    Cerebellar Volume in Autism: Literature Meta-analysis and Analysis of the Autism Brain Imaging Data Exchange Cohort

    No full text
    International audienceBACKGROUND:The neuroanatomical bases of autism spectrum disorder remain largely unknown. Among the most widely discussed candidate endophenotypes, differences in cerebellar volume have been often reported as statistically significant.METHODS:We aimed at objectifying this possible alteration by performing a systematic meta-analysis of the literature and an analysis of the ABIDE (Autism Brain Imaging Data Exchange) cohort. Our meta-analysis sought to determine a combined effect size of autism spectrum disorder diagnosis on different measures of the cerebellar anatomy as well as the effect of possible factors of variability across studies. We then analyzed the cerebellar volume of 328 patients and 353 control subjects from the ABIDE project.RESULTS:The meta-analysis of the literature suggested a weak but significant association between autism spectrum disorder diagnosis and increased cerebellar volume (p = .049, uncorrected), but the analysis of ABIDE did not show any relationship. The studies meta-analyzed were generally underpowered; however, the number of statistically significant findings was larger than expected.CONCLUSIONS:Although we could not provide a conclusive explanation for this excess of significant findings, our analyses would suggest publication bias as a possible reason. Finally, age, sex, and IQ were important sources of cerebellar volume variability, although independent of autism diagnosis

    Alpha Waves as a Neuromarker of Autism Spectrum Disorder: The Challenge of Reproducibility and Heterogeneity

    No full text
    International audienceBACKGROUND: There is no consensus in the literature concerning the presence of abnormal alpha wave profiles in patients with autism spectrum disorder (ASD). This may be due to phenotypic heterogeneity among patients as well as the limited sample sizes utilized. Here we present our results of alpha wave profile analysis based on a sample larger than most of those in the field, performed using a robust processing pipeline. METHODS: We compared the alpha waves profiles at rest in children with ASD to those of age-, sex-, and IQ-matched control individuals. We used linear regression and non-parametric normative models using age as covariate forparsing the clinical heterogeneity. We explored the correlation between EEG profiles and the patient's brain volumes, obtained from structural MRI. We automatized the detection of the alpha peak and visually quality controled our MRI measurements. We assessed the robustness of our results by running the EEG preprocessing with two different versions of Matlab as well as Python. RESULTS:A simple linear regression between peak power or frequency of the alpha waves and the status or age of the participants did not allow to identify any statistically significant relationship. The non-parametric normative model (which took account the non-linear effect of age on the alpha profiles) suggested that participants with ASD displayed more variability than control participants for both frequency and amplitude of the alpha peak (p < 0.05). Independent of the status of the individual, we also observed weak associations (uncorrected p < 0.05) between the alpha frequency, and the volumes of several cortical and subcortical structures (in particular the striatum), but which did not survive correction for multiple testing and changed between analysis pelines. DISCUSSIONS: Our study did not find evidence for abnormal alpha wave profiles in ASD. We propose, however, an analysis pipeline to perform standardized and automatized EEG analyses on large cohorts. These should help the community to address the challenge of clinical heterogeneity of ASD and to tackle the problems of reproducibility
    corecore