365 research outputs found

    Coupled atmosphere-wildland fire modeling with WRF-Fire

    Full text link
    We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. The level-set method allows submesh representation of the burning region and flexible implementation of various ignition modes. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.Comment: Version 3.3, 41 pages, 2 tables, 12 figures. As published in Discussions, under review for Geoscientific Model Developmen

    Fast Fourier Transform Ensemble Kalman Filter with Application to a Coupled Atmosphere-Wildland Fire Model

    Full text link
    We propose a new type of the Ensemble Kalman Filter (EnKF), which uses the Fast Fourier Transform (FFT) for covariance estimation from a very small ensemble with automatic tapering, and for a fast computation of the analysis ensemble by convolution, avoiding the need to solve a sparse system with the tapered matrix. The FFT EnKF is combined with the morphing EnKF to enable the correction of position errors, in addition to amplitude errors, and demonstrated on WRF-Fire, the Weather Research Forecasting (WRF) model coupled with a fire spread model implemented by the level set method.Comment: 8 page

    Wavelet Ensemble Kalman Filters

    Full text link
    We present a new type of the EnKF for data assimilation in spatial models that uses diagonal approximation of the state covariance in the wavelet space to achieve adaptive localization. The efficiency of the new method is demonstrated on an example.Comment: 4 pages, 4 figure

    Data management and analysis with WRF and SFIRE

    Full text link
    We introduce several useful utilities in development for the creation and analysis of real wildland fire simulations using WRF and SFIRE. These utilities exist as standalone programs and scripts as well as extensions to other well known software. Python web scrapers automate the process of downloading and preprocessing atmospheric and surface data from common sources. Other scripts simplify the domain setup by creating parameter files automatically. Integration with Google Earth allows users to explore the simulation in a 3D environment along with real surface imagery. Postprocessing scripts provide the user with a number of output data formats compatible with many commonly used visualization suites allowing for the creation of high quality 3D renderings. As a whole, these improvements build toward a unified web application that brings a sophisticated wildland fire modeling environment to scientists and users alike.Comment: Submitted to proceedings of IGARSS 2012, 4 papers, 1 figur

    Evaluation of WRF-Sfire Performance with Field Observations from the FireFlux experiment

    Get PDF
    This study uses in-situ measurements collected during the FireFlux field experiment to evaluate and improve the performance of coupled atmosphere-fire model WRF-Sfire. The simulation by WRF-Sfire of the experimental burn shows that WRF-Sfire is capable of providing realistic head fire rate-of-spread and the vertical temperature structure of the fire plume, and, up to 10 m above ground level, fire-induced surface flow and vertical velocities within the plume. The model captured the changes in wind speed and direction before, during, and after fire front passage, along with arrival times of wind speed, temperature, and updraft maximae, at the two instrumented flux towers used in FireFlux. The model overestimated vertical velocities and underestimated horizontal wind speeds measured at tower heights above the 10 m, and it is hypothesized that the limited model resolution over estimated the fire front depth, leading to too high a heat release and, subsequently, too strong an updraft. However, on the whole, WRF-Sfire fire plume behavior is consistent with the interpretation of FireFlux observations. The study suggests optimal experimental pre-planning, design, and execution of future field campaigns that are needed for further coupled atmosphere-fire model development and evaluation
    corecore