165 research outputs found

    Evolving Concepts toward Individualized Treatment of Squamous Cell Carcinoma of the Anus

    Get PDF
    Treatment of squamous cell carcinoma of the anus has evolved over the last 5 decades from radical surgery to combined chemoradiation therapy. Radiation treatment techniques have dramatically improved with the development of more powerful computers, algorithms and treatment machines. The clinical impact of the modern radiation treatment techniques, such as intensity-modulated radiotherapy and volumetric modulated arc therapy, is discussed. The standard-of-care regimen still is concurrent Mitomycin C, 5-fluorouracil and high-dose radiation, as was conceived 45 years ago. Variants of this schedule are discussed in this chapter. International guidelines have been generated and implemented. Whereas concurrent chemoradiation therapy is the treatment of choice for locally advanced tumors, early tumors are probably adequately controlled with either reduced dose chemoradiation therapy or radiation therapy alone. Prognostic factors, such as high-risk human papillomavirus, epidermal growth factor receptor and immune response, will be highlighted. The role of surgery in primary care is limited to local excision of T1N0 tumors ≤ 1 cm of the anal margin. Salvage radical surgery is limited to locoregional recurrent, non-metastasized and resectable tumors after chemoradiation therapy. In addition, new treatment modalities, such as targeted therapy and immunotherapy, will be discussed. Current research aims at refining prognostic subgroups to further individualize treatment strategy, implementing quality assurance protocols in international trials and investigating the molecular profile of squamous cell carcinoma of the anus, in order to identify new treatment avenues. This will hopefully change the landscape of anal cancer treatment in the future

    Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability

    Get PDF
    OBJECTIVES: To assess the influence of region of interest (ROI) size and positioning on tumour ADC measurements and interobserver variability in patients with locally advanced rectal cancer (LARC). METHODS: Forty-six LARC patients were retrospectively included. Patients underwent MRI including DWI (b0,500,1000) before and 6-8 weeks after chemoradiation (CRT). Two readers measured mean tumour ADCs (pre- and post-CRT) according to three ROI protocols: whole-volume, single-slice or small solid samples. The three protocols were compared for differences in ADC, SD and interobserver variability (measured as the intraclass correlation coefficient; ICC). RESULTS: ICC for the whole-volume ROIs was excellent (0.91) pre-CRT versus good (0.66) post-CRT. ICCs were 0.53 and 0.42 for the single-slice ROIs versus 0.60 and 0.65 for the sample ROIs. Pre-CRT ADCs for the sample ROIs were significantly lower than for the whole-volume or single-slice ROIs. Post-CRT there were no significant differences between the whole-volume ROIs and the single-slice or sample ROIs, respectively. The SDs for the whole-volume and single-slice ROIs were significantly larger than for the sample ROIs. CONCLUSIONS: ROI size and positioning have a considerable influence on tumour ADC values and interobserver variability. Interobserver variability is worse after CRT. ADCs obtained from the whole tumour volume provide the most reproducible results. Key Points • ROI size and positioning influence tumour ADC measurements in rectal cancer • ROI size and positioning influence interobserver variability of tumour ADC measurements • ADC measurements of the whole tumour volume provide the most reproducible results • Tumour ADC measurements are more reproducible before, rather than after, chemoradiation treatment • Variations caused by ROI size and positioning should be taken into account when using ADC as a biomarker for tumour response

    Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability

    Get PDF
    OBJECTIVES: To assess the influence of region of interest (ROI) size and positioning on tumour ADC measurements and interobserver variability in patients with locally advanced rectal cancer (LARC). METHODS: Forty-six LARC patients were retrospectively included. Patients underwent MRI including DWI (b0,500,1000) before and 6-8 weeks after chemoradiation (CRT). Two readers measured mean tumour ADCs (pre- and post-CRT) according to three ROI protocols: whole-volume, single-slice or small solid samples. The three protocols were compared for differences in ADC, SD and interobserver variability (measured as the intraclass correlation coefficient; ICC). RESULTS: ICC for the whole-volume ROIs was excellent (0.91) pre-CRT versus good (0.66) post-CRT. ICCs were 0.53 and 0.42 for the single-slice ROIs versus 0.60 and 0.65 for the sample ROIs. Pre-CRT ADCs for the sample ROIs were significantly lower than for the whole-volume or single-slice ROIs. Post-CRT there were no significant differences between the whole-volume ROIs and the single-slice or sample ROIs, respectively. The SDs for the whole-volume and single-slice ROIs were significantly larger than for the sample ROIs. CONCLUSIONS: ROI size and positioning have a considerable influence on tumour ADC values and interobserver variability. Interobserver variability is worse after CRT. ADCs obtained from the whole tumour volume provide the most reproducible results. Key Points • ROI size and positioning influence tumour ADC measurements in rectal cancer • ROI size and positioning influence interobserver variability of tumour ADC measurements • ADC measurements of the whole tumour volume provide the most reproducible results • Tumour ADC measurements are more reproducible before, rather than after, chemoradiation treatment • Variations caused by ROI size and positioning should be taken into account when using ADC as a biomarker for tumour response

    An Evaluation and Implementation of Rule-Based Home Energy Management System Using the Rete Algorithm

    Get PDF
    In recent years, sensors become popular and Home Energy Management System (HEMS) takes an important role in saving energy without decrease in QoL (Quality of Life). Currently, many rule-based HEMSs have been proposed and almost all of them assume “IF-THEN” rules. The Rete algorithm is a typical pattern matching algorithm for IF-THEN rules. Currently, we have proposed a rule-based Home Energy Management System (HEMS) using the Rete algorithm. In the proposed system, rules for managing energy are processed by smart taps in network, and the loads for processing rules and collecting data are distributed to smart taps. In addition, the number of processes and collecting data are reduced by processing rules based on the Rete algorithm. In this paper, we evaluated the proposed system by simulation. In the simulation environment, rules are processed by a smart tap that relates to the action part of each rule. In addition, we implemented the proposed system as HEMS using smart taps

    Global variation in the long-term outcomes of ypT0 rectal cancers

    Get PDF
    Background Colorectal cancer mortality presents world-wide variation. In rectal cancers presenting a complete/nearly-complete tumor response (ypT0/ypTis) following neoadjuvant treatment, the features correlated to nodal metastases and relapses still need to be defined. Methods An international cohort study enrolling ypT0/ypTis rectal cancers surgically treated from 2012 to 2017 was conducted. A propensity matching was used to balance nodal-positive and nodal-negative patients and statistical analyses were performed to investigate survivals, using a bootstrap model for internal validation. The features correlated with nodal metastasis were studied. Countries with participating centers were ranked using the World Bank (WBI), Human Development (HDI) and Global Gender Gap (GGG) indexes to compare survivals. Results 680 ypT0/ypTis from 52 European, Australian, Indian and American Institutions were analyzed. Mean follow-up was of 30.4 months. 96.5% were treated with total mesorectal excision, 7.2% were nodal-positive and 8.8% relapsed. Distal cancers (HR 0.71 95%CI: 0.56-0.91) and nodal metastasis and nodal metastasis (HR 3.85 95%CI:1.12–13.19) correlated with worse DFS, whereas a younger age was of borderline significance (HR 0.95 95%CI:0.91–0.99). The bootstrap analysis validated the model on 5000 repetitions. A short-course radiotherapy (OR 0.18 95%CI:0.09–0.37) correlated with the occurrence of nodal metastasis. Those countries classified in the low/medium-WBI, medium-HDI and lower-GGG ranks documented worse DFS curves (respectively p < 0.0001, p < 0.0001 and p 0.0002). However, the clinical stages were similar and patients from medium-HDI countries received more adjuvant chemotherapy than the others (p < 0.0001). Conclusion Sub-groups at risk for relapses and nodal metastasis were identified. A global variation exists also when benchmarking a rectal cancer complete regression

    T-staging of rectal cancer: accuracy of 3.0 Tesla MRI compared with 1.5 Tesla

    Get PDF
    OBJECTIVES: Magnetic resonance imaging (MRI) is not accurate in discriminating T1-2 from borderline T3 rectal tumors. Higher resolution on 3 Tesla-(3T)-MRI could improve diagnostic performance for T-staging. The aim of this study was to determine whether 3T-MRI compared with 1.5 Tesla-(1.5T)-MRI improves the accuracy for the discrimination between T1-2 and borderline T3 rectal tumors and to evaluate reproducibility. METHODS: 13 patients with non-locally advanced rectal cancer underwent imaging with both 1.5T and 3T-MRI. Three readers with different expertise evaluated the images and predicted T-stage with a confidence level score. Receiver operator characteristics curves with areas under the curve (AUC) and diagnostic parameters were calculated. Inter- and intra-observer agreements were calculated with quadratic kappa-weighting. Histology was the reference standard. RESULTS: Seven patients had pT1-2 tumors and six had pT3 tumors. AUCs ranged from 0.66 to 0.87 at 1.5T vs. 0.52-0.82 at 3T. Mean overstaging rate was 43% at 1.5T and 57% at 3T (P = 0.23). Inter-observer agreement was kappa 0.50-0.71 at 1.5T vs. 0.15-0.68 at 3T. Intra-observer agreement was kappa 0.71 at 1.5T and 0.76 at 3T. CONCLUSIONS: This is the first study to compare 3T with 1.5T MRI for T-staging of rectal cancer within the same patients. Our results showed no difference between 3T and 1.5T-MRI for the distinction between T1-2 and borderline T3 tumors, regardless of expertise. The higher resolution at 3T-MRI did not aid in the distinction between desmoplasia in T1-2-tumors and tumor stranding in T3-tumors. Larger studies are needed to acknowledge these findings
    corecore