27 research outputs found

    Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines

    Get PDF
    Published online: 27 February 2023Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1–RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1–RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.Damien R. Drew, Danny W. Wilson, Gretchen E. Weiss, Lee M. Yeoh, Isabelle G. Henshall, Brendan S. Crabb, Sheetij Dutta, Paul R. Gilson, James G. Beeso

    Retargeting azithromycin analogues to have dual-modality antimalarial activity

    Get PDF
    Background: Resistance to front-line antimalarials (artemisinin combination therapies) is spreading, and development of new drug treatment strategies to rapidly kill Plasmodium spp. malaria parasites is urgently needed. Azithromycin is a clinically used macrolide antibiotic proposed as a partner drug for combination therapy in malaria, which has also been tested as monotherapy. However, its slow-killing 'delayed-death' activity against the parasite's apicoplast organelle and suboptimal activity as monotherapy limit its application as a potential malaria treatment. Here, we explore a panel of azithromycin analogues and demonstrate that chemical modifications can be used to greatly improve the speed and potency of antimalarial action. Results: Investigation of 84 azithromycin analogues revealed nanomolar quick-killing potency directed against the very earliest stage of parasite development within red blood cells. Indeed, the best analogue exhibited 1600-fold higher potency than azithromycin with less than 48 hrs treatment in vitro. Analogues were effective against zoonotic Plasmodium knowlesi malaria parasites and against both multi-drug and artemisinin-resistant Plasmodium falciparum lines. Metabolomic profiles of azithromycin analogue-treated parasites suggested activity in the parasite food vacuole and mitochondria were disrupted. Moreover, unlike the food vacuole-targeting drug chloroquine, azithromycin and analogues were active across blood-stage development, including merozoite invasion, suggesting that these macrolides have a multi-factorial mechanism of quick-killing activity. The positioning of functional groups added to azithromycin and its quick-killing analogues altered their activity against bacterial-like ribosomes but had minimal change on 'quick-killing' activity. Apicoplast minus parasites remained susceptible to both azithromycin and its analogues, further demonstrating that quick-killing is independent of apicoplast-targeting, delayed-death activity. Conclusion: We show that azithromycin and analogues can rapidly kill malaria parasite asexual blood stages via a fast action mechanism. Development of azithromycin and analogues as antimalarials offers the possibility of targeting parasites through both a quick-killing and delayed-death mechanism of action in a single, multifactorial chemotype.Amy L. Burns, Brad E. Sleebs, Ghizal Siddiqui, Amanda E. De Paoli, Dovile Anderson, Benjamin Liffner, Richard Harvey, James G. Beeson, Darren J. Creek, Christopher D. Goodman, Geoffrey I. McFadden, and Danny W. Wilso

    Targeting malaria parasites with novel derivatives of azithromycin

    Get PDF
    Introduction: The spread of artemisinin resistant Plasmodium falciparum parasites is of global concern and highlights the need to identify new antimalarials for future treatments. Azithromycin, a macrolide antibiotic used clinically against malaria, kills parasites via two mechanisms: ‘delayed death’ by inhibiting the bacterium-like ribosomes of the apicoplast, and ‘quick-killing’ that kills rapidly across the entire blood stage development. Methods: Here, 22 azithromycin analogues were explored for delayed death and quick-killing activities against P. falciparum (the most virulent human malaria) and P. knowlesi (a monkey parasite that frequently infects humans). Results: Seventeen analogues showed improved quick-killing against both Plasmodium species, with up to 38 to 20-fold higher potency over azithromycin after less than 48 or 28 hours of treatment for P. falciparum and P. knowlesi, respectively. Quick-killing analogues maintained activity throughout the blood stage lifecycle, including ring stages of P. falciparum parasites (5-fold more selective against P. falciparum than human cells. Isopentenyl pyrophosphate supplemented parasites that lacked an apicoplast were equally sensitive to quick-killing analogues, confirming that the quick killing activity of these drugs was not directed at the apicoplast. Further, activity against the related apicoplast containing parasite Toxoplasma gondii and the gram-positive bacterium Streptococcus pneumoniae did not show improvement over azithromycin, highlighting the specific improvement in antimalarial quick-killing activity. Metabolomic profiling of parasites subjected to the most potent compound showed a build-up of non-haemoglobin derived peptides that was similar to chloroquine, while also exhibiting accumulation of haemoglobin-derived peptides that was absent for chloroquine treatment. Discussion: The azithromycin analogues characterised in this study expand the structural diversity over previously reported quick-killing compounds and provide new starting points to develop azithromycin analogues with quickkilling antimalarial activity.Amy L. Burns, Brad E. Sleebs, Maria Gancheva, Kimberley T. McLean, Ghizal Siddiqui, Henrietta Venter, James G. Beeson, Ryan O, Handley, Darren J. Creek, Shutao Ma, Sonja Frölich, Christopher D. Goodman, Geoffrey I. McFadden, and Danny W. Wilso

    A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria

    No full text
    Mono-allelic expression of gene families is used by many organisms to mediate phenotypic variation of surface proteins. In the apicomplexan parasite Plasmodium falciparum, responsible for the severe form of malaria in humans, this is exemplified by antigenic variation of the highly polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1)1, 2. PfEMP1, encoded by the 60-member vargene family3, 4, 5, 6, represents a major virulence factor due to its central role in immune evasion and intravascular parasite sequestration. Mutually exclusive expression of PfEMP1 is controlled by epigenetic mechanisms involving chromatin modification and perinuclear var locus repositioning7, 8. Here we show that a var promoter mediates the nucleation and spreading of stably inherited silenced chromatin. Transcriptional activation of this promoter occurs at the nuclear periphery in association with chromosome-end clusters. Additionally, the var promoter sequence is sufficient to infiltrate a transgene into the allelic exclusion programme of var gene expression, as transcriptional activation of this transgene results in silencing of endogenous var gene transcription. These results show that a var promoter is sufficient for epigenetic silencing and mono-allelic transcription of this virulence gene family, and are fundamental for our understanding of antigenic variation in P. falciparum. Furthermore, the PfEMP1 knockdown parasites obtained in this study will be important tools to increase our understanding of P. falciparum-mediated virulence and immune evasion
    corecore