11 research outputs found

    Review and development of an uranium internal dosimetry and monitoring programme at an uranium plant

    Get PDF
    A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Masters of Science Johannesburg 2013Monitoring for internal exposures to uranium and calculating the corresponding Committed Effective Dose (CED) can be complex. Several contributing parameters such as the differences in the physiochemical nature of the uranium compound, the nature of the exposure scenario, variances in human metabolic behaviour and the capabilities of available bioassay techniques add uncertainty in developing an Internal Dosimetry and Monitoring Programme (IDMP). Necsa’s IDMP was reviewed and found to be in line with best international practices and adequate for monitoring routine exposures to Type M uranium. As found in literature and shown in the present study, the monitoring for Type S uranium is problematic. The present study recommends continuance with the current Type S monitoring programme, however, the need for faecal analysis was identified. A combination of bioassay techniques can assist in determining the unknowns in the abovementioned contributing parameters. Analysis done to quantify the effect of differences in the contributing parameters has brought an understanding on how these parameters can influence and IDMP and knowledge gained from the present study will further enhance the programme and assist in developing the necessary documentation, providing the technical justification for Necsa’s uranium IDMP

    Concomitant administration of meningococcal vaccines with other vaccines in adolescents and adults: a review of available evidence

    No full text
    Invasive meningococcal disease (IMD), a rapidly progressing and potentially fatal illness, disproportionately affects adolescents and young adults. While IMD is best prevented by vaccination, vaccine uptake in these groups is low. An evidence-based understanding of the safety and effectiveness of concomitant vaccination of meningococcal vaccines, including the newer MenB protein vaccines and the more established MenACWY conjugate vaccines, with other vaccines recommended for adolescents and young adults may help maximize vaccination opportunities. We identified 21 studies assessing concomitant administration of meningococcal vaccines with other vaccines in adolescents and adults. Although studies varied in methodology, concomitant administration generally did not affect immunogenicity of the meningococcal or coadministered vaccines. In some cases, reactogenicity increased following concomitant administration, but no definitive safety concerns were raised. In general, data suggest that meningococcal vaccines can be safely and effectively coadministered with other vaccines

    Modeling excess zeroes in an integrated analysis of vaccine safety

    No full text
    In prophylactic vaccine studies in healthy populations, many subjects do not experience a single adverse event (AE). Thus, the number of AEs observed in such clinical trials may be difficult to model because of an excess of zeroes relative to the parametric distributions assumed. To determine which type of modeling provides a better fit for observed AE data, a variety of models were applied to data from an integrated safety database from clinical trials of the meningococcal vaccine MenB-FHbp (Trumenba®, bivalent rLP2086; Pfizer Inc, Philadelphia, PA). MenB-FHbp was the first vaccine approved in the United States to prevent meningococcal serogroup B disease in individuals aged 10 to 25 years. Specifically, this report presents an integrated analysis of AEs from 8 randomized controlled trials that compared MenB-FHbp to placebo or active controls. The number of AEs occurring from dose one to 30 days after the last dose was analyzed. Six models were compared: standard Poisson and negative binomial models and their corresponding zero-inflation and hurdle models. Models were evaluated for their ability to predict the number of AEs and by goodness-of-fit statistics. Models based on the Poisson distribution were a poor fit. The zero-inflated negative binomial model and negative binomial hurdle model provided the closest fit. These results suggest that zero-inflated or hurdle models may provide a better fit to AE data from healthy populations compared with conventional parametric models

    Meningococcal Serogroup B Bivalent rLP2086 Vaccine Elicits Broad and Robust Serum Bactericidal Responses in Healthy Adolescents

    Get PDF
    Neisseria meningitidis serogroup B (MnB) is a leading cause of invasive meningococcal disease in adolescents and young adults. A recombinant factor H binding protein (fHBP) vaccine (Trumenba(®); bivalent rLP2086) was recently approved in the United States in individuals aged 10-25 years. Immunogenicity and safety of 2- or 3-dose schedules of bivalent rLP2086 were assessed in adolescents. METHODS: Healthy adolescents (11 to <19 years) were randomized to 1 of 5 bivalent rLP2086 dosing regimens (0,1,6-month; 0,2,6-month; 0,2-month; 0,4-month; 0,6-month). Immunogenicity was assessed by serum bactericidal antibody assay using human complement (hSBA). Safety assessments included local and systemic reactions and adverse events. RESULTS: Bivalent rLP2086 was immunogenic when administered as 2 or 3 doses; the most robust hSBA responses occurred with 3 doses. The proportion of subjects with hSBA titers ≥1:8 after 3 doses ranged from 91.7% to 95.0%, 98.9% to 99.4%, 88.4% to 89.0%, and 86.1% to 88.5% for MnB test strains expressing vaccine--heterologous fHBP variants A22, A56, B24, and B44, respectively. After 2 doses, responses ranged from 90.8% to 93.5%, 98.4% to 100%, 69.1% to 81.1%, and 70.1% to 77.5%. Geometric mean titers (GMTs) were highest among subjects receiving 3 doses and similar between the 2- and 3-dose regimens. After 2 doses, GMTs trended numerically higher among subjects with longer intervals between the first and second dose (6 months vs 2 and 4 months). Bivalent rLP2086 was well tolerated. CONCLUSIONS: Bivalent rLP2086 was immunogenic and well tolerated when administered in 2 or 3 doses. Three doses yielded the most robust hSBA response rates against MnB strains expressing vaccine-heterologous subfamily B fHBP

    From research to licensure and beyond: clinical development of MenB-FHbp, a broadly protective meningococcal B vaccine

    No full text
    Introduction: Given the characteristics of meningococcal carriage and transmission and the sudden, often severe onset and long-term consequences of disease, vaccination can most effectively provide large-scale control of invasive disease. Six serogroups (A, B, C, W, X, and Y) cause nearly all meningococcal disease globally. Capsular polysaccharide conjugate vaccines can prevent serogroups A, C, W, and Y disease. More recently, recombinant protein vaccines for preventing serogroup B meningococcal (MenB) disease have become available, with a major target of vaccine-induced immune response for both vaccines being bacterial factor H binding protein (FHbp). Importantly, FHbp segregates into only two distinct subfamilies (A [also classified as variants 2 and 3] and B [variant 1]). This review summarizes the complete clinical development program supporting licensure of MenB-FHbp (Trumenba®, Bivalent rLP2086), the only MenB vaccine containing antigens from both FHbp subfamilies. Areas covered: Eleven published clinical studies assessing MenB-FHbp efficacy and safety among 20,803 adolescents and adults are examined. Particular focus is on the methodology of immunogenicity assessments used as a surrogate for clinical efficacy. Expert commentary: Clinical studies in adolescents and adults consistently demonstrated MenB-FHbp safety and induction of immunologic responses against antigenically and epidemiologically diverse MenB isolates, supporting licensure and immunization recommendations

    Meningococcal serogroup B-specific responses after vaccination with bivalent rLP2086: 4 year follow-up of a randomised, single-blind, placebo-controlled, phase 2 trial

    No full text
    Bivalent rLP2086 is a recombinant factor H binding protein-based vaccine approved in the USA for prevention of meningococcal serogroup B disease in 10–25-year-olds. We aimed to assess the persistence of bactericidal antibodies up to 4 years after a three-dose schedule of bivalent rLP2086.Medicin

    Meningococcal Serogroup B Bivalent rLP2086 Vaccine Elicits Broad and Robust Serum Bactericidal Responses in Healthy Adolescents.

    No full text
    Neisseria meningitidis serogroup B (MnB) is a leading cause of invasive meningococcal disease in adolescents and young adults. A recombinant factor H binding protein (fHBP) vaccine (Trumenba(®); bivalent rLP2086) was recently approved in the United States in individuals aged 10-25 years. Immunogenicity and safety of 2- or 3-dose schedules of bivalent rLP2086 were assessed in adolescents
    corecore