1,935 research outputs found

    Possible Evidence for Metal Accretion onto the Surfaces of Metal-Poor Main-Sequence Stars

    Full text link
    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parametrized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.Comment: 12 pages, 7 figures, ApJ accepted, comments welcom

    Very Metal-Poor Outer-Halo Stars with Round Orbits

    Full text link
    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move on eccentric orbits. However, our understanding of the motions of distant, in-situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al. (2010).Comment: 5 pages, 3 figures, ApJ Letter accepted, comments welcom

    Automated Determination of [Fe/H] and [C/Fe] from Low-Resolution Spectroscopy

    Full text link
    We develop an automated spectral synthesis technique for the estimation of metallicities ([Fe/H]) and carbon abundances ([C/Fe]) for metal-poor stars, including carbon-enhanced metal-poor stars, for which other methods may prove insufficient. This technique, autoMOOG, is designed to operate on relatively strong features visible in even low- to medium-resolution spectra, yielding results comparable to much more telescope-intensive high-resolution studies. We validate this method by comparison with 913 stars which have existing high-resolution and low- to medium-resolution to medium-resolution spectra, and that cover a wide range of stellar parameters. We find that at low metallicities ([Fe/H] < -2.0), we successfully recover both the metallicity and carbon abundance, where possible, with an accuracy of ~ 0.20 dex. At higher metallicities, due to issues of continuum placement in spectral normalization done prior to the running of autoMOOG, a general underestimate of the overall metallicity of a star is seen, although the carbon abundance is still successfully recovered. As a result, this method is only recommended for use on samples of stars of known sufficiently low metallicity. For these low-metallicity stars, however, autoMOOG performs much more consistently and quickly than similar, existing techniques, which should allow for analyses of large samples of metal-poor stars in the near future. Steps to improve and correct the continuum placement difficulties are being pursued.Comment: 8 pages, 7 figures; accepted for publication in A

    The stellar content of the Hamburg/ESO survey VI. The metallicity distribution of main-sequence turnoff stars in the Galactic halo

    Full text link
    We determine the metallicity distribution function (MDF) of the Galactic halo based on metal-poor main-sequence turnoff-stars (MSTO) which were selected from the Hamburg/ESO objective-prism survey (HES) database. Corresponding follow-up moderateresolution observations (R ~ 2000) of some 682 stars (among which 617 were accepted program stars) were carried out with the 2.3m telescope at the Siding Spring Observatory (SSO). Corrections for the survey volume covered by the sample stars were quantitatively estimated and applied to the observed MDF. The corrections are quite small, when compared with those for a previously studied sample of metal-poor giants. The corrected observational MDF of the turnoff sample was then compared with that of the giants, as well as with a number of theoretical predictions of Galactic chemical evolution, including the mass-loss modified Simple Model. Although the survey-volume corrected MDFs of the metal-poor turnoff and the halo giants notably differ in the region of [Fe/H] > -2.0, below [Fe/H] ~ -2.0, (the region we scientifically focus on most) both MDFs show a sharp drop at [Fe/H] ~ -3.6 and present rather similar distributions in the low-metallicity tail. Theoretical models can fit some parts of the observed MDF, but none is found to simultaneously reproduce the peak as well as the features in the metal-poor region with [Fe/H] between -2.0 to -3.6. Among the tested models only the GAMETE model, when normalized to the tail of the observed MDF below [Fe/H] ~ -3.0, and with Z_{cr} = 10^{-3.4}Z_{\odot}, is able to predict the sharp drop at [Fe/H] ~ -3.6.Comment: 10 pages, 11 figures, accepted for publication in A&

    Carbon-Enhanced Metal-Poor Stars in the Inner and Outer Halo Components of the Milky Way

    Get PDF
    (Abridged) Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30000 calibration stars from the Sloan Digital Sky Survey (SDSS). Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ("carbonicity") in excess of [C/Fe]=+0.7 = +0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for \feh\ <−1.5< -1.5 is 8%; for \feh\ <−2.0< -2.0 it is 12%; for \feh\ <−2.5<-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from $\sim +1.0$ at \feh\ $= -1.5$ to ∼+1.7\sim +1.7 at \feh\ =−2.7= -2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, ∣|Z∣|. For ∣|Z∣| <5< 5 kpc, relatively few CEMP stars are identified. For distances ∣|Z∣| >5> 5 kpc, the CarDF exhibits a strong tail towards high values, up to [C/Fe] >> +3.0. We also find a clear increase in the CEMP frequency with ∣|Z∣|. For stars with −2.0<-2.0 < [Fe/H] <−< -1.5, the frequency grows from 5% at ∣|Z∣| ∼2\sim 2 kpc to 10% at ∣|Z∣| ∼10\sim 10 kpc. For stars with [Fe/H] <−< -2.0, the frequency grows from 8% at ∣|Z∣| ∼2\sim 2 kpc to 25% at ∣|Z∣| ∼10\sim 10 kpc. For stars with −2.0<-2.0 < [Fe/H] $\sim +1.0$ for 0 kpc $<$ $|$Z$|$ $<$ 10 kpc, with little dependence on $|$Z$|$; for [Fe/H] $< -$2.0, ∼+1.5\sim +1.5, again roughly independent of ∣|Z∣|.Comment: Accepted for publication in the Astrophysical Journal, 32 pages, 15 figure
    • …
    corecore