274 research outputs found
Gaussian Process Probes (GPP) for Uncertainty-Aware Probing
Understanding which concepts models can and cannot represent has been
fundamental to many tasks: from effective and responsible use of models to
detecting out of distribution data. We introduce Gaussian process probes (GPP),
a unified and simple framework for probing and measuring uncertainty about
concepts represented by models. As a Bayesian extension of linear probing
methods, GPP asks what kind of distribution over classifiers (of concepts) is
induced by the model. This distribution can be used to measure both what the
model represents and how confident the probe is about what the model
represents. GPP can be applied to any pre-trained model with vector
representations of inputs (e.g., activations). It does not require access to
training data, gradients, or the architecture. We validate GPP on datasets
containing both synthetic and real images. Our experiments show it can (1)
probe a model's representations of concepts even with a very small number of
examples, (2) accurately measure both epistemic uncertainty (how confident the
probe is) and aleatory uncertainty (how fuzzy the concepts are to the model),
and (3) detect out of distribution data using those uncertainty measures as
well as classic methods do. By using Gaussian processes to expand what probing
can offer, GPP provides a data-efficient, versatile and uncertainty-aware tool
for understanding and evaluating the capabilities of machine learning models
A Continuing Role for Minimum Parking Requirements in a Dense Growing City? Evidence from New York City
Depuis le début de l'occupation de la Cisjordanie et de la Bande de Gaza en 1967, l'émergence, le renforcement ou l'affaiblissement d'un leadership palestinien « de l'intérieur » fait l'objet d'une âpre concurrence entre la population locale première concernée, Israël puissance occupante, la Jordanie, puissance nominalement souveraine sur la Cisjordanie et Jérusalem-Est jusqu'en juillet 88, et l'Organisation de Libération de la Palestine (OLP) reconnue « unique représentant légitime du peuple..
Acquisition of Chess Knowledge in AlphaZero
What is learned by sophisticated neural network agents such as AlphaZero?
This question is of both scientific and practical interest. If the
representations of strong neural networks bear no resemblance to human
concepts, our ability to understand faithful explanations of their decisions
will be restricted, ultimately limiting what we can achieve with neural network
interpretability. In this work we provide evidence that human knowledge is
acquired by the AlphaZero neural network as it trains on the game of chess. By
probing for a broad range of human chess concepts we show when and where these
concepts are represented in the AlphaZero network. We also provide a
behavioural analysis focusing on opening play, including qualitative analysis
from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary
investigation looking at the low-level details of AlphaZero's representations,
and make the resulting behavioural and representational analyses available
online.Comment: 69 pages, 44 figure
MRI after Whoops procedure:diagnostic value for residual sarcoma and predictive value for an incomplete second resection
OBJECTIVE: To determine the value of MRI for the detection and assessment of the anatomic extent of residual sarcoma after a Whoops procedure (unplanned sarcoma resection) and its utility for the prediction of an incomplete second resection. MATERIALS AND METHODS: This study included consecutive patients who underwent a Whoops procedure, successively followed by gadolinium chelate-enhanced MRI and second surgery at a tertiary care sarcoma center. RESULTS: Twenty-six patients were included, of whom 19 with residual tumor at the second surgery and 8 with an incomplete second resection (R1: n = 6 and R2: n = 2). Interobserver agreement for residual tumor at MRI after a Whoops procedure was perfect (κ value: 1.000). MRI achieved a sensitivity of 47.4% (9/19), a specificity of 100% (7/7), a positive predictive value of 100% (9/9), and a negative predictive value of 70.0% (7/17) for the detection of residual tumor. MRI correctly classified 2 of 19 residual sarcomas as deep-seated (i.e., extending beyond the superficial muscle fascia) but failed to correctly classify 3 of 19 residual sarcomas as deep-seated. There were no significant associations between MRI findings (presence of residual tumor, maximum tumor diameter, anatomic tumor extent, tumor margins, tumor spiculae, and tumor tail on the superficial fascia) with an incomplete (R1 or R2) second resection. CONCLUSION: Gadolinium chelate-enhanced MRI is a reproducible method to rule in residual sarcoma, but it is insufficiently accurate to rule out and assess the anatomic extent or residual sarcoma after a Whoops procedure. Furthermore, MRI has no utility in predicting an incomplete second resection
Late Quaternary loess in northeastern Colorado: Part I—Age and paleoclimatic significance
Loess in eastern Colorado covers an estimated 14,000 km2, and is the westernmost part of the North American midcontinent loess province. Stratigraphic studies indicate there were two periods of loess deposition in eastern Colorado during late Quaternary time. The first period spanned ca. 20,000 to 12,000 14C yr B.P. (ca. 20–14 ka) and correlates reasonably well with the culmination and retreat of Pinedale glaciers in the Colorado Front Range during the last glacial maximum. The second period of loess deposition occurred between ca. 11,000 and 9,000 14C yr B.P. This interval may be Holocene or may correlate with a hypothesized Younger Dryas glacial advance in the Colorado Front Range. Sedimentologic, mineralogic, and geochemical data indicate that as many as three sources could have supplied loess in eastern Colorado. These sources include glaciogenic silt (derived from the Colorado Front Range) and two bedrock sources, volcaniclastic silt from the White River Group, and clays from the Pierre Shale. The sediment sources imply a generally westerly paleowind during the last glacial maximum. New carbon isotope data, combined with published faunal data, indicate that the loess was probably deposited on a cool steppe, implying a last glacial maximum July temperature depression, relative to the present, of at least 5–6 °C. Overall, loess deposition in eastern Colorado occurred mostly toward the end of the last glacial maximum, under cooler and drier conditions, with generally westerly winds from more than one source
Lorentz Violation in Extra Dimensions
In theories with extra dimensions it is well known that the Lorentz
invariance of the -dimensional spacetime is lost due to the compactified
nature of the dimensions leaving invariance only in 4d. In such theories
other sources of Lorentz violation may exist associated with the physics that
initiated the compactification process at high scales. Here we consider the
possibility of capturing some of this physics by analyzing the higher
dimensional analog of the model of Colladay and Kostelecky. In that scenario a
complete set of Lorentz violating operators arising from spontaneous Lorentz
violation, that are not obviously Planck-scale suppressed, are added to the
Standard Model action. Here we consider the influence of the analogous set of
operators which break Lorentz invariance in 5d within the Universal Extra
Dimensions picture. We show that such operators can greatly alter the
anticipated Kaluza-Klein(KK) spectra, induce electroweak symmetry breaking at a
scale related to the inverse compactification radius, yield sources of parity
violation in, e.g., 4d QED/QCD and result in significant violations of
KK-parity conservation produced by fermion Yukawa couplings, thus destabilizing
the lightest KK particle. LV in 6d is briefly discussed.Comment: 26 pages, 2 figures; additional references and discussio
The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis
We propose the minimal, lepton-number conserving, SU(3)xSU(2)xU(1)
gauge-singlet, or phantom, extension of the Standard Model. The extension is
natural in the sense that all couplings are of O(1) or forbidden due to a
phantom sector global U(1)_D symmetry, and basically imitates the standard
Majorana see-saw mechanism. Spontaneous breaking of the U(1)_D symmetry
triggers consistent electroweak gauge symmetry breaking only if it occurs at a
scale compatible with small Dirac neutrino masses and baryogenesis through
Dirac leptogenesis. Dirac leptogenesis proceeds through the usual
out-of-equilibrium decay scenario, leading to left and right-handed neutrino
asymmetries that do not fully equilibrate after they are produced. The model
contains two physical Higgs bosons and a massless Goldstone boson. The
existence of the Goldstone boson suppresses the Higgs to bb branching ratio and
instead the Higgs bosons will mainly decay to invisible Goldstone and/or to
visible vector boson pairs. In a representative scenario, we estimate that with
30 fb^-1 integrated luminosity, the LHC could discover this invisibly decaying
Higgs, with mass ~120 GeV. At the same time a significantly heavier, partner
Higgs boson with mass ~210 GeV could be found through its vector boson decays.
Electroweak constraints as well as astrophysical and cosmological implications
are analysed and discussed.Comment: 21 pages, 4 figures. Corrected typos and added references. To appear
in JHE
Noncommutative Inspired Black Holes in Extra Dimensions
In a recent string theory motivated paper, Nicolini, Smailagic and Spallucci
(NSS) presented an interesting model for a noncommutative inspired,
Schwarzschild-like black hole solution in 4-dimensions. The essential effect of
having noncommutative co-ordinates in this approach is to smear out matter
distributions on a scale associated with the turn-on of noncommutativity which
was taken to be near the 4-d Planck mass. In particular, NSS took this smearing
to be essentially Gaussian. This energy scale is sufficiently large that in 4-d
such effects may remain invisible indefinitely. Extra dimensional models which
attempt to address the gauge hierarchy problem, however, allow for the
possibility that the effective fundamental scale may not be far from 1
TeV, an energy regime that will soon be probed by experiments at both the LHC
and ILC. In this paper we generalize the NSS model to the case where flat,
toroidally compactified extra dimensions are accessible at the Terascale and
examine the resulting modifications in black hole properties due to the
existence of noncommutativity. We show that while many of the
noncommutativity-induced black hole features found in 4-d by NSS persist, in
some cases there can be significant modifications due the presence of extra
dimensions. We also demonstrate that the essential features of this approach
are not particularly sensitive to the Gaussian nature of the smearing employed
by NSS.Comment: 30 pages, 12 figures; slight text modifications and references adde
- …