39 research outputs found

    A New Framework to Implement Model-Informed Dosing in Clinical Guidelines: Piperacillin and Amikacin as Proof of Concept

    Get PDF
    Background: Modeling and simulation is increasingly used to study pediatric pharmacokinetics, but clinical implementation of age-appropriate doses lags behind. Therefore, we aimed to develop model-informed doses using published pharmacokinetic data and a decision framework to adjust dosing guidelines based on these doses, using piperacillin and amikacin in critically ill children as proof of concept. Methods: Piperacillin and amikacin pharmacokinetic models in critically ill children were extracted from literature. Concentration-time profiles were simulated for various dosing regimens for a virtual PICU patient dataset, including the current DPF dose and doses proposed in the studied publications. Probability of target attainment (PTA) was compared between the different dosing regimens. Next, updated dosing recommendations for the DPF were proposed, and evaluated using a new framework based on PK study quality and benefit-risk analysis of clinical implementation. Results: Three studies for piperacillin (

    High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages

    Get PDF
    Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fc gamma receptor (Fc gamma R) Ila and FeyRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.Proteomic

    Model-informed pharmacological interventions against tuberculosis and malaria

    No full text

    Managementreview 2006 en kwaliteitsplan 2007 van het Centrum voor Visserijonderzoek (CVO)

    No full text

    Managementreview 2008 en kwaliteitsplan 2009 van het Centrum voor Visserijonderzoek (CVO)

    No full text

    Managementreview 2007 en kwaliteitsplan 2008 van het Centrum voor Visserijonderzoek (CVO)

    No full text

    Management review over 2011 en kwaliteitsplan voor 2012 van het Centrum voor Visserijonderzoek

    No full text

    Managementreview 2009 en kwaliteitsplan 2010 van het Centrum voor Visserijonderzoek (CVO)

    No full text
    corecore