129 research outputs found

    Novel quantitative trait locus is mapped to chromosome 12p11 for left ventricular mass in Dominican families: the Family Study of Stroke Risk and Carotid Atherosclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular mass (LVM) is an important risk factor for stroke and vascular disease. The genetic basis of LVM is unclear although a high heritability has been suggested. We sought to map quantitative trait loci (QTL) for LVM using large Dominican families.</p> <p>Methods</p> <p>Probands were selected from Dominican subjects of the population-based Northern Manhattan Study (NOMAS). LVM was measured by transthoracic echocardiography. A set of 405 microsatellite markers was used to screen the whole genome among 1360 subjects from 100 Dominican families who had complete phenotype data and DNA available. A polygenic covariate screening was run to identify the significant covariates. Variance components analysis was used to estimate heritability and to detect evidence for linkage, after adjusting for significant risk factors. Ordered-subset Analysis (OSA) was conducted to identify a more homogeneous subset for stratification analysis.</p> <p>Results</p> <p>LVM had a heritability of 0.58 in the studied population (p < 0.0001). The most significant evidence for linkage was found at chromosome 12p11 (MLOD = 3.11, empirical p = 0.0003) with peak marker at D12S1042. This linkage was significantly increased in a subset of families with the high average waist circumference (MLOD = 4.45, p = 0.0045 for increase in evidence for linkage).</p> <p>Conclusion</p> <p>We mapped a novel QTL near D12S1042 for LVM in Dominicans. Enhanced linkage evidence in families with larger waist circumference suggests that gene(s) residing within the QTL interact(s) with abdominal obesity to contribute to phenotypic variation of LVM. Suggestive evidence for linkage (LOD = 1.99) has been reported at the same peak marker for left ventricular geometry in a White population from the HyperGEN study, underscoring the importance of this QTL for left ventricular phenotype. Further fine mapping and validation studies are warranted to identify the underpinning genes.</p

    FE65 Binds Teashirt, Inhibiting Expression of the Primate-Specific Caspase-4

    Get PDF
    The Alzheimer disease (AD) amyloid protein precursor (APP) can bind the FE65 adaptor protein and this complex can regulate gene expression. We carried out yeast two-hybrid studies with a PTB domain of FE65, focusing on those genes that might be involved in nuclear signaling, and identified and validated Teashirt proteins as FE65 interacting proteins in neurons. Using reporter systems, we observed that FE65 could simultaneously recruit SET, a component of the inhibitor of acetyl transferase, and Teashirt, which in turn recruited histone deacetylases, to produce a powerful gene-silencing complex. We screened stable cell lines with a macroarray focusing on AD-related genes and identified CASP4, encoding caspase-4, as a target of this silencing complex. Chromatin immunoprecipitation showed a direct interaction of FE65 and Teashirt3 with the promoter region of CASP4. Expression studies in postmortem samples demonstrated decreasing expression of Teashirt and increasing expression of caspase-4 with progressive cognitive decline. Importantly, there were significant increases in caspase-4 expression associated with even the earliest neuritic plaque changes in AD. We evaluated a case-control cohort and observed evidence for a genetic association between the Teashirt genes TSHZ1 and TSHZ3 and AD, with the TSHZ3 SNP genotype correlating with expression of Teashirt3. The results were consistent with a model in which reduced expression of Teashirt3, mediated by genetic or other causes, increases caspase-4 expression, leading to progression of AD. Thus the cell biological, gene expression and genetic data support a role for Teashirt/caspase-4 in AD biology. As caspase-4 shows evidence of being a primate-specific gene, current models of AD and other neurodegenerative conditions may be incomplete because of the absence of this gene in the murine genome

    A follow-up study for left ventricular mass on chromosome 12p11 identifies potential candidate genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left ventricular mass (LVM) is an important risk factor for cardiovascular disease. Previously we found evidence for linkage to chromosome 12p11 in Dominican families, with a significant increase in a subset of families with high average waist circumference (WC). In the present study, we use association analysis to further study the genetic effect on LVM.</p> <p>Methods</p> <p>Association analysis with LVM was done in the one LOD critical region of the linkage peak in an independent sample of 897 Caribbean Hispanics. Genotype data were available on 7085 SNPs from 23 to 53 MB on chromosome 12p11. Adjustment was made for vascular risk factors and population substructure using an additive genetic model. Subset analysis by WC was performed to test for a difference in genetic effects between the high and low WC subsets.</p> <p>Results</p> <p>In the overall analysis, the most significant association was found to rs10743465, downstream of the <it>SOX5 </it>gene (p = 1.27E-05). Also, 19 additional SNPs had nominal p < 0.001. In the subset analysis, the most significant difference in genetic effect between those with high and low WC occurred with rs1157480 (p = 1.37E-04 for the difference in ÎČ coefficients), located upstream of <it>TMTC1</it>. Twelve additional SNPs in or near 6 genes had p < 0.001.</p> <p>Conclusions</p> <p>The current study supports previously identified evidence by linkage for a genetic effect on LVM on chromosome 12p11 using association analysis in population-based Caribbean Hispanic cohort. <it>SOX5 </it>may play an important role in the regulation of LVM. An interaction of <it>TMTC1 </it>with abdominal obesity may contribute to phenotypic variation of LVM.</p

    DOMINO-AD protocol: donepezil and memantine in moderate to severe Alzheimer's disease - a multicentre RCT.

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is the commonest cause of dementia. Cholinesterase inhibitors, such as donepezil, are the drug class with the best evidence of efficacy, licensed for mild to moderate AD, while the glutamate antagonist memantine has been widely prescribed, often in the later stages of AD. Memantine is licensed for moderate to severe dementia in AD but is not recommended by the England and Wales National Institute for Health and Clinical Excellence. However, there is little evidence to guide clinicians as to what to prescribe as AD advances; in particular, what to do as the condition progresses from moderate to severe. Options include continuing cholinesterase inhibitors irrespective of decline, adding memantine to cholinesterase inhibitors, or prescribing memantine instead of cholinesterase inhibitors. The aim of this trial is to establish the most effective drug option for people with AD who are progressing from moderate to severe dementia despite treatment with donepezil. METHOD: DOMINO-AD is a pragmatic, 15 centre, double-blind, randomized, placebo controlled trial. Patients with AD, currently living at home, receiving donepezil 10 mg daily, and with Standardized Mini-Mental State Examination (SMMSE) scores between 5 and 13 are being recruited. Each is randomized to one of four treatment options: continuation of donepezil with memantine placebo added; switch to memantine with donepezil placebo added; donepezil and memantine together; or donepezil placebo with memantine placebo. 800 participants are being recruited and treatment continues for one year. Primary outcome measures are cognition (SMMSE) and activities of daily living (Bristol Activities of Daily Living Scale). Secondary outcomes are non-cognitive dementia symptoms (Neuropsychiatric Inventory), health related quality of life (EQ-5D and DEMQOL-proxy), carer burden (General Health Questionnaire-12), cost effectiveness (using Client Service Receipt Inventory) and institutionalization. These outcomes are assessed at baseline, 6, 18, 30 and 52 weeks. All participants will be subsequently followed for 3 years by telephone interview to record institutionalization. DISCUSSION: There is considerable debate about the clinical and cost effectiveness of anti-dementia drugs. DOMINO-AD seeks to provide clear evidence on the best treatment strategies for those managing patients at a particularly important clinical transition point. TRIAL REGISTRATION: Current controlled trials ISRCTN49545035.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Gene Expression Profiling in Cells with Enhanced Îł-Secretase Activity

    Get PDF
    BACKGROUND: Processing by gamma-secretase of many type-I membrane protein substrates triggers signaling cascades by releasing intracellular domains (ICDs) that, following nuclear translocation, modulate the transcription of different genes regulating a diverse array of cellular and biological processes. Because the list of gamma-secretase substrates is growing quickly and this enzyme is a cancer and Alzheimer's disease therapeutic target, the mapping of gamma-secretase activity susceptible gene transcription is important for sharpening our view of specific affected genes, molecular functions and biological pathways. METHODOLOGY/PRINCIPAL FINDINGS: To identify genes and molecular functions transcriptionally affected by gamma-secretase activity, the cellular transcriptomes of Chinese hamster ovary (CHO) cells with enhanced and inhibited gamma-secretase activity were analyzed and compared by cDNA microarray. The functional clustering by FatiGO of the 1,981 identified genes revealed over- and under-represented groups with multiple activities and functions. Single genes with the most pronounced transcriptional susceptibility to gamma-secretase activity were evaluated by real-time PCR. Among the 21 validated genes, the strikingly decreased transcription of PTPRG and AMN1 and increased transcription of UPP1 potentially support data on cell cycle disturbances relevant to cancer, stem cell and neurodegenerative diseases' research. The mapping of interactions of proteins encoded by the validated genes exclusively relied on evidence-based data and revealed broad effects on Wnt pathway members, including WNT3A and DVL3. Intriguingly, the transcription of TERA, a gene of unknown function, is affected by gamma-secretase activity and was significantly altered in the analyzed human Alzheimer's disease brain cortices. CONCLUSIONS/SIGNIFICANCE: Investigating the effects of gamma-secretase activity on gene transcription has revealed several affected clusters of molecular functions and, more specifically, 21 genes that hold significant potential for a better understanding of the biology of gamma-secretase and its roles in cancer and Alzheimer's disease pathology

    Locus for severity implicates CNS resilience in progression of multiple sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that results in significant neurodegeneration in the majority of those affected and is a common cause of chronic neurological disability in young adults(1,2). Here, to provide insight into the potential mechanisms involved in progression, we conducted a genome-wide association study of the age-related MS severity score in 12,584 cases and replicated our findings in a further 9,805 cases. We identified a significant association with rs10191329 in the DYSF-ZNF638 locus, the risk allele of which is associated with a shortening in the median time to requiring a walking aid of a median of 3.7 years in homozygous carriers and with increased brainstem and cortical pathology in brain tissue. We also identified suggestive association with rs149097173 in the DNM3-PIGC locus and significant heritability enrichment in CNS tissues. Mendelian randomization analyses suggested a potential protective role for higher educational attainment. In contrast to immune-driven susceptibility(3), these findings suggest a key role for CNS resilience and potentially neurocognitive reserve in determining outcome in MS

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    • 

    corecore