17 research outputs found

    Thermodynamics of an integrable model for electrons with correlated hopping

    Full text link
    A new supersymmetric model for electrons with generalized hopping terms and Hubbard interaction on a one-dimensional lattice is solved by means of the Bethe Ansatz. We investigate the phase diagram of this model by studying the ground state and excitations of the model as a function of the interaction parameter, electronic density and magnetization. Using arguments from conformal field theory we can study the critical exponents describing the asymptotic behaviour of correlation functions at long distances.Comment: 24 pp., latex+epsf, figures include

    Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry

    Full text link
    The nested algebraic Bethe ansatz is presented for the anisotropic supersymmetric UU model maintaining quantum supersymmetry. The Bethe ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given.Comment: 7 pages (revtex), minor modifications. To appear in Mod. Phys. Lett.

    Friedel Oscillations and Charge Density Waves in Chains and Ladders

    Full text link
    The density matrix renormalization group method for ladders works much more efficiently with open boundary conditions. One consequence of these boundary conditions is groundstate charge density oscillations that often appear to be nearly constant in magnitude or to decay only slightly away from the boundaries. We analyse these using bosonization techniques, relating their detailed form to the correlation exponent and distinguishing boundary induced generalized Friedel oscillations from true charge density waves. We also discuss a different approach to extracting the correlation exponent from the finite size spectrum which uses exclusively open boundary conditions and can therefore take advantage of data for much larger system sizes. A general discussion of the Friedel oscillation wave-vectors is given, and a convenient Fourier transform technique is used to determine it. DMRG results are analysed on Hubbard and t-J chains and 2 leg t-J ladders. We present evidence for the existence of a long-ranged charge density wave state in the t-J ladder at a filling of n=0.75 and near J/t \approx 0.25.Comment: Revtex, 15 pages, 15 postscript figure

    Luttinger liquid behavior in spin chains with a magnetic field

    Full text link
    Antiferromagnetic Heisenberg spin chains in a sufficiently strong magnetic field are Luttinger liquids, whose parameters depend on the actual magnetization of the chain. Here we present precise numerical estimates of the Luttinger liquid dressed charge ZZ, which determines the critical exponents, by calculating the magnetization and quadrupole operator profiles for S=1/2S=1/2 and S=1 chains using the density matrix renormalization group method. Critical amplitudes and the scattering length at the chain ends are also determined. Although both systems are Luttinger liquids the characteristic parameters differ considerably.Comment: Final version, 6 pages, 6 EPS figure

    Generalized q-Onsager Algebras and Dynamical K-matrices

    Full text link
    A procedure to construct KK-matrices from the generalized qq-Onsager algebra \cO_{q}(\hat{g}) is proposed. This procedure extends the intertwiner techniques used to obtain scalar (c-number) solutions of the reflection equation to dynamical (non-c-number) solutions. It shows the relation between soliton non-preserving reflection equations or twisted reflection equations and the generalized qq-Onsager algebras. These dynamical KK-matrices are important to quantum integrable models with extra degrees of freedom located at the boundaries: for instance, in the quantum affine Toda field theories on the half-line they yield the boundary amplitudes. As examples, the cases of \cO_{q}(a^{(2)}_{2}) and \cO_{q}(a^{(1)}_{2}) are treated in details

    Identificación de parámetros de líneas de transmisión usando estimación de estado

    Get PDF
    Este artículo presenta dos algoritmos, basados en estimación de estado, para la identificación de parámetros de líneas de transmisión. Las técnicas utilizadas se fundamentan en la inclusión de los parámetros de las líneas en el vector de estado y la solución del estimador de estado por mínimos cuadrados ponderados. En ambos casos se construyerón sistemas de potencia ficticios que se componen de copias de la misma línea de transmisión para diferentes instantes de tiempo. Uno de los algoritmos usó mediciones de magnitud de voltaje y potencia activa y reactiva, mientras que el otro implementó mediciones fasoriales sincronizadas de voltaje y corriente. Los algoritmos fueron evaluados utilizando mediciones simuladas en el sistema de 30 nodos de IEEE. Ambas soluciones identificaron la totalidad de los parámetros de las líneas con errores menores del 1%.This article presents two state-estimation-based algorithms for identifying transmission line parameters. The identification technique used simultaneous state-parameter estimation on an artificial power system composed of several copies of the same transmission line, using measurements at different points in time. The first algorithm used active and reactive power measurements at both ends of the line. The second method used synchronised phasor voltage and current measurements at both ends. The algorithms were tested in simulated conditions on the 30-node IEEE test system. All line parameters for this system were estimated with errors below 1%
    corecore