9 research outputs found

    Cosmic coincidence problem and variable constants of physics

    Full text link
    The standard model of cosmology is investigated using time dependent cosmological constant Λ\Lambda and Newton's gravitational constant GG. The total energy content is described by the modified Chaplygin gas equation of state. It is found that the time dependent constants coupled with the modified Chaplygin gas interpolate between the earlier matter to the later dark energy dominated phase of the universe. We also achieve a convergence of parameter ω1\omega\to-1, with minute fluctuations, showing an evolving ω\omega. Thus our model fairly alleviates the cosmic coincidence problem which demands ω=1\omega=-1 at present time.Comment: 27 pages, 15 figure

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.022630.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) 0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.77880.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) 0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.10790.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) 0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.001890.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) 0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.7113.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) 4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur

    Modified Chaplygin Gas as a Unified Dark Matter and Dark Energy Model and Cosmic Constraints

    Full text link
    A modified Chaplygin gas model (MCG), ρMCG/ρMCG0=[Bs+(1Bs)a3(1+B)(1+α)]1/(1+α)\rho_{MCG}/\rho_{MCG0}=[B_{s}+(1-B_{s})a^{-3(1+B)(1+\alpha)}]^{1/(1+\alpha)}, as a unified dark matter model and dark energy model is constrained by using current available cosmic observational data points which include type Ia supernovae, baryon acoustic oscillation and the seventh year full WMAP data points. As a contrast to the consideration in the literatures, we {\it do not} separate the MCG into two components, i.e. dark mater and dark energy component, but we take it as a whole energy component-a unified dark sector. By using Markov Chain Monte Carlo method, a tight constraint is obtained: α=0.0007270.001400.00234+0.00142+0.00391\alpha= 0.000727_{- 0.00140- 0.00234}^{+ 0.00142+ 0.00391}, B=0.0007770.0003020.000697+0.000201+0.000915B=0.000777_{- 0.000302- 0.000697}^{+ 0.000201+ 0.000915} and Bs=0.7820.01620.0329+0.0163+0.0307B_s= 0.782_{- 0.0162- 0.0329}^{+ 0.0163+ 0.0307} .}Comment: 6 pages, 3 figure
    corecore