4 research outputs found

    Hertz-to-terahertz dielectric response of nanoconfined water molecules

    Get PDF
    Broad-band dielectric spectroscopy, heat capacity measurements and molecular dynamic simulations are applied to study excitations of interacting electric dipoles spatially arranged in a network with an inter-dipole distance of 5-10 A. The dipoles with magnitude of 1.85 Debye are represented by single H2O molecules located in voids (0.5 nm size) formed by ions of the crystal lattice of cordierite. We discover emergence of nontrivial disordered paraelectric phase of dipolar system with signs of phase transition below 3 K.Comment: 3 pages, 4 figure

    Water-Activated Semiquinone Formation and Carboxylic Acid Dissociation in Melanin Revealed by Infrared Spectroscopy

    No full text
    Eumelanin is a widespread biomacromolecule pigment in the biosphere and has been widely investigated for numerous bioelectronics and energetic applications. Many of these applications depend on eumelanin’s ability to conduct proton current at various levels of hydration. The origin of this behavior is connected to a comproportionation reaction between oxidized and reduced monomer moieties and water. A hydration-dependent FTIR spectroscopic study on eumelanin is presented herein, which allows for the first time tracking the comproportionation reaction via the gradual increase of the overall aromaticity of melanin monomers in the course of hydration. We identified spectral features associated with the presence of specific “one and a half” CO bonds, typical for o-semiquinones. Signatures of semiquinone monomers with internal hydrogen bonds and that carboxylic groups, in contrast to semiquinones, begin to dissociate at the very beginning of melanin hydration were indicated. As such, we suggest a modification to the common hydration-dependent conductivity mechanism and propose that the conductivity at low hydration is dominated by carboxylic acid protons, whereas higher hydration levels manifest semiquinone protons

    High-Quality Graphene Using Boudouard Reaction

    Get PDF
    Funding Information: The authors thank Mr. Andrei Starkov for illustrations and Mrs. Anastasiya Grebenko for assistance with sample synthesis. This work was performed using equipment of MIPT Shared Facilities Center. The authors acknowledge Vadim Khrapai and Evgeny Tikhonov (ISSP) for assistance with low temperature measurements and professor Galina Tsirlina (MSU) for fruitful discussions. The authors are also grateful to Salavat Khasanov for assistance and verification of XRD measurements. The authors thank the Helmholtz‐Zentrum Berlin für Materialien und Energie for the allocation of synchrotron radiation beamtime. Computations were done at the Finnish IT Center for Science, CSC. Russian Foundation for Basic Research grant # 19‐32‐90143 (A.K.G., A.G.N.). German Federal Ministry of Education and Research (BMBF) grant no. 05K19KER (A.A.M.). Russian Science Foundation No. 21‐19‐00226 (D.V.K., graphene synthesis). Russian Science Foundation No. 21‐72‐20050 (B.P.G., THz‐FIR spectroscopy). Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis project АААА‐А21‐121011390011‐4 (A.N.S.). Partially supported by the Ministry of Science and Higher Education of the Russian Federation No. FSMG‐2021‐0005 (V.S.V., ARPES studies) and Russian Science Foundation No. 21‐72‐30026 (V.S.V, STM Studies). The work was supported by the Council on grants of the President of the Russian Federation grant number НШ‐1330.2022.1.3. Publisher Copyright: © 2022 The Authors. Advanced Science published by Wiley-VCH GmbHFollowing the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in generalopens avenues for breakthrough graphene-catalyst composite production.Peer reviewe
    corecore