739 research outputs found

    Popocatepetl Ash Infiltration in Lanthanum-Gadolinium Zirconate Ceramics

    No full text
    Currently, the most widely used material for thermal barrier coatings (TBC) in aeronautical industry is zirconia stabilized with 6- 8% of yttria (7YSZ). However, 7YSZ transforms from tetragonal to monoclic at temperatures above 1200°C causing phase destabilization [2]. This transformation can also be accelerated by the presence of silica compounds as in molten volcanic ashes (VAs) [3]. These deposits of molten silica infiltrate throughout the coating porosity and solidify during cooling producing residual stresses that eventually generate TBC failure [4]. Rare earth zirconates (REZs) have been considered as a promising material due to phase stabilization at high temperatures, these crystalize in a typical pyrochlore structure. Compared to 7YSZ, REZs are ceramic materials that have many advantages for TBC applications: no phase transformation from room temperature to their melting temperature, considerably high sintering resistance, a very low thermal conductivity, and a lower oxygen ion diffusivity [2]. Among these REZs, gadolinium zirconate (GZO) and lanthanum zirconate (LZO) have received great attention due to their stability at temperatures above 1500°C. When LZO and GZO interact with Si-based melts, they exhibit the formation of reaction products such as apatites (Ap). The formation of Ap is considered as a mechanism against infiltration of Si-based melts because they can act as a sealing layer along the interphase preventing the infiltration mechanism [5]. The objective of this work is to analyze the behavior of ash infiltration Popocatepetl VA (Mexico) with LZO, GZO and LZGO solid solutions ((La1-xGdx)2Zr2O7) by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)

    Evaluation of the reactivity of dense lanthanum‑gadolinium zirconate ceramics with Colima volcanic ashes

    No full text
    The effects of ingestion of airborne particles from pyroclastic events of active volcanoes by aircraft turbines and their subsequent reaction with thermal barrier coatings have attracted the attention of the scientific community in recent years. The reaction products of infiltration experiments of lanthanum‑gadolinium zirconate (LGZO) ceramics with molten ashes from the active Colima volcano at 1250 °C for 10 h are presented and discussed as a function of the Gd3+ content. Five ceramic compositions, varying the Gd3+ content in solid solution were synthesized by the chemical coprecipitation and calcination method of pressed powders. These compositions include pure lanthanum and gadolinium zirconates, LZO, and GZO, respectively. Penetration depth and identification, and in some cases quantification of the reaction products between the molten ash and LGZO ceramics were performed by scanning electron microscopy, chemical composition with energy dispersive X-ray spectroscopy, grazing incident X-ray diffraction as well as micro-Raman spectroscopy. The LZO ceramic exhibited the greatest infiltration resistance with an infiltration depth of approximately 23 μm from the surface. The phase characteristics of the reaction layers were dependent on the gadolinium content. LZO, LGZO25, and LGZO50 (x = 0, 0.25, and 0.5) showed the presence of apatite as well as monoclinic and tetragonal zirconia, while LGZO75 and GZO (x = 0.75 and 1), additionally showed the presence of cubic zirconia and anorthite. As the Gd3+ content increases in the LGZO solid solutions, the wavenumber value corresponding to the stretching vibrational mode of the silicon tetrahedra in apatite shifts from 862 to 877 cm−1, which is associated with a decrease in Sisingle bondO bond lengths. These findings indicate that the amount and kind of rare earth cations dissolved in the melt plays an important role in the precipitation of the reaction products

    Search for central exclusive production of top quark pairs in proton-proton collisions at s\sqrt{s} = 13 TeV with tagged protons

    No full text
    International audienceA search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s= \sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1 ^{-1} collected in 2016--2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ> p_{\mathrm{T}}^{\gamma} > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ> m_{\gamma\gamma} > 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1 |\zeta_1| 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s\sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1^{-1} collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ>p_\mathrm{T}^\gamma > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    No full text
    International audienceThe Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb1^{-1} in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

    No full text
    A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pppp+Z/γ+X \mathrm{p}\mathrm{p}\to \mathrm{p}\mathrm{p} +\mathrm{Z}/\gamma+\mathrm{X} , in proton-tagged events from proton-proton collisions at s= \sqrt{s}= 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pppp+Z/γ+X \mathrm{p}\mathrm{p}\to \mathrm{p}\mathrm{p} +\mathrm{Z}/\gamma+\mathrm{X} are set.A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, pp \to pp + Z/γ\gamma + X, in proton-tagged events from proton-proton collisions at s\sqrt{s} = 13 TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of pp \to pp + Z/γ\gamma + X are set

    Search for central exclusive production of top quark pairs in proton-proton collisions at s\sqrt{s} = 13 TeV with tagged protons

    No full text
    International audienceA search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s\sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1^{-1} collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ>p_\mathrm{T}^\gamma > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV
    corecore