339 research outputs found

    Beam profile investigation of the new collimator system for the J-PET detector

    Get PDF
    Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector which will be used for search for discrete symmetries violations in the decays of positronium atoms and for investigations with positronium atoms in life-sciences and medical diagnostics. In this article we present three methods for determination of the beam profile of collimated annihilation gamma quanta. Precise monitoring of this profile is essential for time and energy calibration of the J-PET detector and for the determination of the library of model signals used in the hit-time and hit-position reconstruction. We have we have shown that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM. Determination of this characteristic is essential for designing and construction the collimator system for the 24-module J-PET prototype. Simulations of the beam profile for different collimator dimensions were performed. This allowed us to choose optimal collimation system in terms of the beam profile parameters, dimensions and weight of the collimator taking into account the design of the 24 module J-PET detector.Comment: 14 pages, 9 figure

    Potential of the J-PET detector for studies of discrete symmetries in decays of positronium atom - a purely leptonic system

    Get PDF
    The Jagiellonian Positron Emission Tomograph (J-PET) was constructed as a prototype of the cost-effective scanner for the simultaneous metabolic imaging of the whole human body. Being optimized for the detection of photons from the electron-positron annihilation with high time- and high angular-resolution, it constitutes a multi-purpose detector providing new opportunities for studying the decays of positronium atoms. Positronium is the lightest purely leptonic object decaying into photons. As an atom bound by a central potential it is a parity eigenstate, and as an atom built out of an electron and an anti-electron it is an eigenstate of the charge conjugation operator. Therefore, the positronium is a unique laboratory to study discrete symmetries whose precision is limited in principle by the effects due to the weak interactions expected at the level of (~1014^{-14}) and photon-photon interactions expected at the level of (~109^{-9}). The J-PET detector enables to perform tests of discrete symmetries in the leptonic sector via the determination of the expectation values of the discrete-symmetries-odd operators, which may be constructed from the spin of ortho-positronium atom and the momenta and polarization vectors of photons originating from its annihilation. In this article we present the potential of the J-PET detector to test the C, CP, T and CPT symmetries in the decays of positronium atoms.Comment: 27 pages, 6 figure

    Processing optimization with parallel computing for the J-PET tomography scanner

    Get PDF
    The Jagiellonian-PET (J-PET) collaboration is developing a prototype TOF-PET detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measurements. The very fast, FPGA-based front-end electronics and the data acquisition system, as well as, low- and high-level reconstruction algorithms were specially developed to be used with the J-PET scanner. The TOF-PET data processing and reconstruction are time and resource demanding operations, especially in case of a large acceptance detector, which works in triggerless data acquisition mode. In this article, we discuss the parallel computing methods applied to optimize the data processing for the J-PET detector. We begin with general concepts of parallel computing and then we discuss several applications of those techniques in the J-PET data processing.Comment: 8 page

    A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

    Get PDF
    We present a study of the application of the Jagiellonian Positron Emission Tomograph (J-PET) for the registration of gamma quanta from decays of ortho-positronium (o-Ps). The J-PET is the first positron emission tomography scanner based on organic scintillators in contrast to all current PET scanners based on inorganic crystals. Monte Carlo simulations show that the J-PET as an axially symmetric and high acceptance scanner can be used as a multi-purpose detector well suited to pursue research including e.g. tests of discrete symmetries in decays of ortho-positronium in addition to the medical imaging. The gamma quanta originating from o-Ps decay interact in the plastic scintillators predominantly via the Compton effect, making the direct measurement of their energy impossible. Nevertheless, it is shown in this paper that the J-PET scanner will enable studies of the o-Ps3γ\to3\gamma decays with angular and energy resolution equal to σ(θ)0.4\sigma(\theta) \approx 0.4^{\circ} and σ(E)4.1\sigma(E) \approx 4.1 keV, respectively. An order of magnitude shorter decay time of signals from plastic scintillators with respect to the inorganic crystals results not only in better timing properties crucial for the reduction of physical and instrumental background, but also suppresses significantly the pileups, thus enabling compensation of the lower efficiency of the plastic scintillators by performing measurements with higher positron source activities

    Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector

    Full text link
    This work reports on a new reconstruction algorithm allowing to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.Comment: 18 pages, 5 figures. Accepted for publication in Nuclear Instrumentation and Methods in Physics Research

    Searches for discrete symmetries violation in ortho-positronium decay using the J-PET detector

    Get PDF
    In this paper we present prospects for using the J-PET detector to search for discrete symmetries violations in a purely leptonic system of the positronium atom. We discuss tests of CP and CPT symmetries by means of ortho-positronium decays into three photons. No zero expectation values for chosen correlations between ortho-positronium spin and momentum vectors of photons would imply the existence of physics phenomena beyond the Standard Model. Previous measurements resulted in violation amplitude parameters for CP and CPT symmetries consistent with zero, with an uncertainty of about 10-3. The J-PET detector allows to determine those values with better precision thanks to a unique time and angular esolution combined with a high geometrical acceptance. Achieving the aforementioned is possible due to application of polymer scintillators instead of crystals as detectors of annihilation quanta.Comment: in Nukleonika 201

    Calculation of time resolution of the J-PET tomograph using the Kernel Density Estimation

    Full text link
    In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the Kernel Density Estimation method. We obtain simple, closed-form analytical formulas for time resolutions. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built out from 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results, obtained for the J-PET scanner equipped with vacuum tube photomultipliers, are consistent.Comment: 25 pages, 11 figure

    J-PET analysis framework for the prototype TOF-PET detector

    Full text link
    Novel TOF-PET scanner solutions demand, apart from the state of the art detectors, software for fast processing of the gathered data, monitoring of the whole scanner and reconstruction of the PET image. In this article we present an analysis framework for the novel STRIP-PET scanner developed by the J-PET collaboration in the Institute of Physics of the Jagiellonian University. This software is based on the ROOT package used in many particle physics experiments.Comment: 4 pages, 2 figure

    Analysis framework for the J-PET scanner

    Get PDF
    J-PET analysis framework is a flexible, lightweight, ROOT-based software package which provides the tools to develop reconstruction and calibration procedures for PET tomography. In this article we present the implementation of the full data-processing chain in the J-PET framework which is used for the data analysis of the J-PET tomography scanner. The Framework incorporates automated handling of PET setup parameters' database as well as high level tools for building data reconstruction procedures. Each of these components is briefly discussed.Comment: 6 pages, 1 figur

    Studies of unicellular micro-organisms Saccharomyces cerevisiae by means of Positron Annihilation Lifetime Spectroscopy

    Get PDF
    Results of Positron Annihilation Lifetime Spectroscopy (PALS) and microscopic studies on simple microorganisms: brewing yeasts are presented. Lifetime of ortho - positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer lived component) for lyophilised and aqueous yeasts, respectively. Also hygroscopicity of yeasts in time was examined, allowing to check how water - the main component of the cell - affects PALS parameters, thus lifetime of o-Ps were found to change from 1.2 to 1.4 ns (shorter lived component) for the dried yeasts. The time sufficient to hydrate the cells was found below 10 hours. In the presence of liquid water an indication of reorganization of yeast in the molecular scale was observed. Microscopic images of the lyophilised, dried and wet yeasts with best possible resolution were obtained using Inverted Microscopy (IM) and Environmental Scanning Electron Microscopy (ESEM) methods. As a result visible changes to the surface of the cell membrane were observed in ESEM images.Comment: Nukleonika (2015
    corecore