99 research outputs found

    An Efficient Implementation of the GMC Micromechanics Model for Multi-Phased Materials with Complex Microstructures

    Get PDF
    An efficient implementation of the generalized method of cells micromechanics model is presented that allows analysis of periodic unidirectional composites characterized by repeating unit cells containing thousands of subcells. The original formulation, given in terms of Hill's strain concentration matrices that relate average subcell strains to the macroscopic strains, is reformulated in terms of the interfacial subcell tractions as the basic unknowns. This is accomplished by expressing the displacement continuity equations in terms of the stresses and then imposing the traction continuity conditions directly. The result is a mixed formulation wherein the unknown interfacial subcell traction components are related to the macroscopic strain components. Because the stress field throughout the repeating unit cell is piece-wise uniform, the imposition of traction continuity conditions directly in the displacement continuity equations, expressed in terms of stresses, substantially reduces the number of unknown subcell traction (and stress) components, and thus the size of the system of equations that must be solved. Further reduction in the size of the system of continuity equations is obtained by separating the normal and shear traction equations in those instances where the individual subcells are, at most, orthotropic. The reformulated version facilitates detailed analysis of the impact of the fiber cross-section geometry and arrangement on the response of multi-phased unidirectional composites with and without evolving damage. Comparison of execution times obtained with the original and reformulated versions of the generalized method of cells demonstrates the new version's efficiency

    Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure

    Get PDF
    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical properties. Correlation with cyclic data revealed the presence of a mechanism not considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular specimens had little effect on the predicted thermal expansion

    ACT Payload Shroud Structural Concept Analysis and Optimization

    Get PDF
    Aerospace structural applications demand a weight efficient design to perform in a cost effective manner. This is particularly true for launch vehicle structures, where weight is the dominant design driver. The design process typically requires many iterations to ensure that a satisfactory minimum weight has been obtained. Although metallic structures can be weight efficient, composite structures can provide additional weight savings due to their lower density and additional design flexibility. This work presents structural analysis and weight optimization of a composite payload shroud for NASA s Ares V heavy lift vehicle. Two concepts, which were previously determined to be efficient for such a structure are evaluated: a hat stiffened/corrugated panel and a fiber reinforced foam sandwich panel. A composite structural optimization code, HyperSizer, is used to optimize the panel geometry, composite material ply orientations, and sandwich core material. HyperSizer enables an efficient evaluation of thousands of potential designs versus multiple strength and stability-based failure criteria across multiple load cases. HyperSizer sizing process uses a global finite element model to obtain element forces, which are statistically processed to arrive at panel-level design-to loads. These loads are then used to analyze each candidate panel design. A near optimum design is selected as the one with the lowest weight that also provides all positive margins of safety. The stiffness of each newly sized panel or beam component is taken into account in the subsequent finite element analysis. Iteration of analysis/optimization is performed to ensure a converged design. Sizing results for the hat stiffened panel concept and the fiber reinforced foam sandwich concept are presented

    A Framework for Performing Multiscale Stochastic Progressive Failure Analysis of Composite Structures

    Get PDF
    A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers

    Determining Shear Stress Distribution in a Laminate

    Get PDF
    A "simplified shear solution" method approximates the through-thickness shear stress distribution within a composite laminate based on an extension of laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather, it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply-level stresses can be efficiently determined from global load resultants at a given location in a structure and used to evaluate the margin of safety on a ply-by-ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. The method has been incorporated within the HyperSizer commercial structural sizing software to improve its predictive capability for designing composite structures. The HyperSizer structural sizing software is used extensively by NASA to design composite structures. In the case of through-thickness shear loading on panels, HyperSizer previously included a basic, industry-standard, method for approximating the resulting shear stress distribution in sandwich panels. However, no such method was employed for solid laminate panels. The purpose of the innovation is to provide an approximation of the through-thickness shear stresses in a solid laminate given the through-thickness shear loads (Qx and Qy) on the panel. The method was needed for implementation within the HyperSizer structural sizing software so that the approximated ply-level shear stresses could be utilized in a failure theory to assess the adequacy of a panel design. The simplified shear solution method was developed based on extending and generalizing bi-material beam theory to plate-like structures. It is assumed that the through-thickness shear stresses arise due to local bending of the laminate induced by the through-thickness shear load, and by imposing equilibrium both vertically and horizontally, the through-thickness shear stress distribution can be calculated. The resulting shear stresses integrate to the applied shear load, are continuous at the ply interfaces, and are zero at the laminate-free surfaces. If both Qx and Qy shear loads are present, it is assumed that they act independently and that their effects can be superposed. The calculated shear stresses can be rotated within each ply to the principal material coordinates for use in a ply-level failure criterion. The novelty of the simplified shear solution method is its simplicity and the fact that it does not require solution of a particular boundary value problem. The advantages of the innovation are that an approximation of the though-thickness shear stress distribution can be quickly determined for any solid laminate or solid laminate region within a stiffened panel

    The Equivalence of the Radial Return and Mendelson Methods for Integrating the Classical Plasticity Equations

    Get PDF
    The radial return and Mendelson methods for integrating the equations of classical plasticity, which appear independently in the literature, are shown to be identical. Both methods are presented in detail as are the specifics of their algorithmic implementation. Results illustrate the methods' equivalence across a range of conditions and address the question of when the methods require iteration in order for the plastic state to remain on the yield surface. FORTRAN code implementations of the radial return and Mendelson methods are provided in the appendix

    Buckling Design and Analysis of a Payload Fairing One-Sixth Cylindrical Arc-Segment Panel

    Get PDF
    Design and analysis results are reported for a panel that is a 16th arc-segment of a full 33-ft diameter cylindrical barrel section of a payload fairing structure. Six such panels could be used to construct the fairing barrel, and, as such, compression buckling testing of a 16th arc-segment panel would serve as a validation test of the buckling analyses used to design the fairing panels. In this report, linear and nonlinear buckling analyses have been performed using finite element software for 16th arc-segment panels composed of aluminum honeycomb core with graphiteepoxy composite facesheets and an alternative fiber reinforced foam (FRF) composite sandwich design. The cross sections of both concepts were sized to represent realistic Space Launch Systems (SLS) Payload Fairing panels. Based on shell-based linear buckling analyses, smaller, more manageable buckling test panel dimensions were determined such that the panel would still be expected to buckle with a circumferential (as opposed to column-like) mode with significant separation between the first and second buckling modes. More detailed nonlinear buckling analyses were then conducted for honeycomb panels of various sizes using both Abaqus and ANSYS finite element codes, and for the smaller size panel, a solid-based finite element analysis was conducted. Finally, for the smaller size FRF panel, nonlinear buckling analysis was performed wherein geometric imperfections measured from an actual manufactured FRF were included. It was found that the measured imperfection did not significantly affect the panel's predicted buckling respons

    Modeling Progressive Damage Using Local Displacement Discontinuities Within the FEAMAC Multiscale Modeling Framework

    Get PDF
    A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach

    Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    Get PDF
    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters

    FORTRAN Versions of Reformulated HFGMC Codes

    Get PDF
    Several FORTRAN codes have been written to implement the reformulated version of the high-fidelity generalized method of cells (HFGMC). Various aspects of the HFGMC and its predecessors were described in several prior NASA Tech Briefs articles, the most recent being HFGMC Enhancement of MAC/GMC (LEW-17818-1), NASA Tech Briefs, Vol. 30, No. 3 (March 2006), page 34. The HFGMC is a mathematical model of micromechanics for simulating stress and strain responses of fiber/matrix and other composite materials. The HFGMC overcomes a major limitation of a prior version of the GMC by accounting for coupling of shear and normal stresses and thereby affords greater accuracy, albeit at a large computational cost. In the reformulation of the HFGMC, the issue of computational efficiency was addressed: as a result, codes that implement the reformulated HFGMC complete their calculations about 10 times as fast as do those that implement the HFGMC. The present FORTRAN implementations of the reformulated HFGMC were written to satisfy a need for compatibility with other FORTRAN programs used to analyze structures and composite materials. The FORTRAN implementations also afford capabilities, beyond those of the basic HFGMC, for modeling inelasticity, fiber/matrix debonding, and coupled thermal, mechanical, piezo, and electromagnetic effects
    corecore