437 research outputs found

    SiC(0001): a surface Mott-Hubbard insulator

    Full text link
    We present ab-initio electronic structure calculations for the Si-terminated SiC(0001)3Ă—3\sqrt{3}\times\sqrt{3} surface. While local density approximation (LDA) calculations predict a metallic ground state with a half-filled narrow band, Coulomb effects, included by the spin-polarized LDA+U method, result in a magnetic (Mott-Hubbard) insulator with a gap of 1.5 eV, comparable with the experimental value of 2.0 eV. The calculated value of the inter-site exchange parameter, J=30K, leads to the prediction of a paramagnetic Mott state, except at very low temperatures. The observed Si 2p surface core level doublet can naturally be explained as an on-site exchange splitting.Comment: RevTex, 4 pages, 4 eps-figure

    Absolute proper motion of the Galactic open cluster M67

    Full text link
    We derived the absolute proper motion (PM) of the old, solar-metallicity Galactic open cluster M67 using observations collected with CFHT (1997) and with LBT (2007). About 50 galaxies with relatively sharp nuclei allow us to determine the absolute PM of the cluster. We find (mu_alpha cos(delta),mu_delta)_J2000.0 = (-9.6+/-1.1,-3.7+/-0.8) mas/yr. By adopting a line-of-sight velocity of 33.8+/-0.2 km/s, and assuming a distance of 815+/-50 pc, we explore the influence of the Galactic potential, with and without the bar and/or spiral arms, on the galactic orbit of the cluster.Comment: 7 pages, 5 figures, and 3 tables. Published in Astronomy and Astrophysics, Volume 513, id.A51

    An upper limit to the secular variation of the gravitational constant from white dwarf stars

    Get PDF
    A variation of the gravitational constant over cosmological ages modifies the main sequence lifetimes and white dwarf cooling ages. Using an state-of-the-art stellar evolutionary code we compute the effects of a secularly varying G on the main sequence ages and, employing white dwarf cooling ages computed taking into account the effects of a running G, we place constraints on the rate of variation of Newton's constant. This is done using the white dwarf luminosity function and the distance of the well studied open Galactic cluster NGC 6791. We derive an upper bound G'/G ~ -1.8 10^{-12} 1/yr. This upper limit for the secular variation of the gravitational constant compares favorably with those obtained using other stellar evolutionary properties, and can be easily improved if deep images of the cluster allow to obtain an improved white dwarf luminosity function.Comment: 15 pages, 4 figures, accepted for publication in JCA

    A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes

    Get PDF
    NGC 6791 is a well studied open cluster1 that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (~8 Gyr) and the age derived from the termination of the white dwarf cooling sequence (~6 Gyr) are significantly different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, 22Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallise and phase separation of the main constituents of the core of a typical white dwarf, 12C and 16O, is expected to occur. This sequence of events is expected to introduce significant delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, solving the age discrepancy for NGC 6791.Comment: 3 pages, 2 figures, published in Natur

    Hubble Space Telescope astrometry of the closest brown dwarf binary system -- I. Overview and improved orbit

    Full text link
    Located at ~2pc, the L7.5+T0.5 dwarfs system WISE J104915.57-531906.1 (Luhman16AB) is the third closest system known to Earth, making it a key benchmark for detailed investigation of brown dwarf atmospheric properties, thermal evolution, multiplicity, and planet-hosting frequency. In the first study of this series -- based on a multi-cycle Hubble Space Telescope (HST) program -- we provide an overview of the project and present improved estimates of positions, proper motions, annual parallax, mass ratio, and the current best assessment of the orbital parameters of the A-B pair. Our HST observations encompass the apparent periastron of the binary at 220.5+/-0.2 mas at epoch 2016.402. Although our data seem to be inconsistent with recent ground-based astrometric measurements, we also exclude the presence of third bodies down to Neptune masses and periods longer than a year.Comment: 19 pages, 9 figures, 9 tables. Accepted for publication in MNRAS on 2017 May

    The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. XIX. A Chemical Tagging of the Multiple Stellar Populations Over the Chromosome Maps

    Full text link
    The HST UV Survey of Globular Clusters (GCs) has investigated GCs and their stellar populations. In previous papers of this series we have introduced a pseudo two-color diagram, "chromosome map" (ChM), that maximises the separation between the multiple populations. We have identified two main classes of GCs: Type I (~83% of the objects) and Type II, both hosting two main groups of stars, referred to in this series as first (1G) and second generation (2G). Type II clusters exhibit two or more parallel sequences of 1G and 2G stars in their ChMs. We exploit elemental abundances from literature to assign the chemical composition to the distinct populations as identified on the ChMs of 29 GCs. We find that stars in different regions of the ChM have different composition: 1G stars share the same light-element content as field stars, while 2G stars are enhanced in N, Na and depleted in O. Stars enhanced in Al and depleted in Mg populate the extreme regions of the ChM. We investigate the color spread among 1G stars observed in many GCs, and find no evidence for variations in light elements, whereas either a 0.1 dex Fe spread or a variation in He remain to be verified. In the attempt of analysing the global properties of the multiple populations, we have constructed a universal ChM, which highlights that, though variegate, the phenomenon has some common pattern. The universal ChM reveals a tight connection with Na, for which we have provided an empirical relation. The additional ChM sequences typical of Type II GCs are enhanced in metallicity and, often, in s elements. Omega Cen can be classified as an extreme Type II GC, with a ChM displaying three main streams, each with its own variations in chemical abundances. One of the most noticeable differences is between the lower and upper streams, with the latter (associated with higher He) having higher Fe and lower Li. We publicly release ChMs.Comment: 35 pages, 28 figures, 3 tables. Submitted to MNRA

    Multiple stellar populations in Magellanic Cloud clusters. V. The split main sequence of the young cluster NGC1866

    Full text link
    One of the most unexpected results in the field of stellar populations of the last few years, is the discovery that some Magellanic-Cloud globular clusters younger than ~400 Myr, exhibit bimodal main sequences (MSs) in their color-magnitude diagrams (CMDs). Moreover, these young clusters host an extended main sequence turn off (eMSTO) in close analogy with what is observed in most ~1-2 Gyr old clusters of both Magellanic Clouds. We use high-precision Hubble-Space-Telescope photometry to study the young star cluster NGC1866 in the Large Magellanic Cloud. We discover an eMSTO and a split MS. The analysis of the CMD reveals that (i) the blue MS is the less populous one, hosting about one-third of the total number of MS stars; (ii) red-MS stars are more centrally concentrated than blue-MS stars; (iii) the fraction of blue-MS stars with respect to the total number of MS stars drops by a factor of ~2 in the upper MS with F814W <~19.7. The comparison between the observed CMDs and stellar models reveals that the observations are consistent with ~200 Myr old highly-rotating stars on the red-MS, with rotation close to critical value, plus a non-rotating stellar population spanning an age interval between ~140 and 220 Myr, on the blue-MS. Noticeable, neither stellar populations with different ages only, nor coeval stellar models with different rotation rates, properly reproduce the observed split MS and eMSTO. We discuss these results in the context of the eMSTO and multiple MS phenomenon.Comment: 11 pages, 11 figures, accepted for publication in MNRA

    First observational evidence of a relation between globular clusters' internal rotation and stellar masses

    Full text link
    Several observational studies have shown that many Galactic globular clusters (GCs) are characterised by internal rotation. Theoretical studies of the dynamical evolution of rotating clusters have predicted that, during their long-term evolution, these stellar systems should develop a dependence of the rotational velocity around the cluster's centre on the mass of stars, with the internal rotation increasing for more massive stars. In this paper we present the first observational evidence of the predicted rotation-mass trend. In our investigation, we exploited the Gaia\mathit{Gaia} Data Release 3 catalogue of three GCs: NGC 104 (47 Tuc), NGC 5139 (ω\omega Cen) and NGC 5904 (M 5). We found clear evidence of a cluster rotation-mass relation in 47 Tuc and M 5, while in ω\omega Cen, the dynamically youngest system among the three clusters studied here, no such trend was detected.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in MNRAS Letter

    Global and non-global parameters of horizontal branch morphology of globular clusters

    Full text link
    The horizontal branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC, and the other a non-global parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (HST) and analyse the CMDs of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the RGB and the coolest part of the HB, and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterised by Delta Y and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among Delta Y, GC mass, and L2. We conclude that age and metallicity are the main global parameters while the range of helium abundance within a GC is the main non-global parameter defining the HB morphology of Galactic GCs.Comment: 34 pages, 13 figures, accepted for publication in Ap
    • …
    corecore