273 research outputs found

    Theory of dynamic crack branching in brittle materials

    Full text link
    The problem of dynamic symmetric branching of an initial single brittle crack propagating at a given speed under plane loading conditions is studied within a continuum mechanics approach. Griffith's energy criterion and the principle of local symmetry are used to determine the cracks paths. The bifurcation is predicted at a given critical speed and at a specific branching angle: both correlated very well with experiments. The curvature of the subsequent branches is also studied: the sign of TT, with TT being the non singular stress at the initial crack tip, separates branches paths that diverge from or converge to the initial path, a feature that may be tested in future experiments. The model rests on a scenario of crack branching with some reasonable assumptions based on general considerations and in exact dynamic results for anti-plane branching. It is argued that it is possible to use a static analysis of the crack bifurcation for plane loading as a good approximation to the dynamical case. The results are interesting since they explain within a continuum mechanics approach the main features of the branching instabilities of fast cracks in brittle materials, i.e. critical speeds, branching angle and the geometry of subsequent branches paths.Comment: 41 pages, 15 figures. Accepted to International Journal of Fractur

    Fracture surfaces of heterogeneous materials: a 2D solvable model

    Full text link
    Using an elastostatic description of crack growth based on the Griffith criterion and the principle of local symmetry, we present a stochastic model describing the propagation of a crack tip in a 2D heterogeneous brittle material. The model ensures the stability of straight cracks and allows for the study of the roughening of fracture surfaces. When neglecting the effect of the non singular stress, the problem becomes exactly solvable and yields analytic predictions for the power spectrum of the paths. This result suggests an alternative to the conventional power law analysis often used in the analysis of experimental data.Comment: 4 pages, 4 figure

    Measuring order in the isotropic packing of elastic rods

    Full text link
    The packing of elastic bodies has emerged as a paradigm for the study of macroscopic disordered systems. However, progress is hampered by the lack of controlled experiments. Here we consider a model experiment for the isotropic two-dimensional confinement of a rod by a central force. We seek to measure how ordered is a folded configuration and we identify two key quantities. A geometrical characterization is given by the number of superposed layers in the configuration. Using temporal modulations of the confining force, we probe the mechanical properties of the configuration and we define and measure its effective compressibility. These two quantities may be used to build a statistical framework for packed elastic systems.Comment: 4 pages, 5 figure

    A comparative study of crumpling and folding of thin sheets

    Get PDF
    Crumpling and folding of paper are at rst sight very di erent ways of con ning thin sheets in a small volume: the former one is random and stochastic whereas the latest one is regular and deterministic. Nevertheless, certain similarities exist. Crumpling is surprisingly ine cient: a typical crumpled paper ball in a waste-bin consists of as much as 80% air. Similarly, if one folds a sheet of paper repeatedly in two, the necessary force becomes so large that it is impossible to fold it more than 6 or 7 times. Here we show that the sti ness that builds up in the two processes is of the same nature, and therefore simple folding models allow to capture also the main features of crumpling. An original geometrical approach shows that crumpling is hierarchical, just as the repeated folding. For both processes the number of layers increases with the degree of compaction. We nd that for both processes the crumpling force increases as a power law with the number of folded layers, and that the dimensionality of the compaction process (crumpling or folding) controls the exponent of the scaling law between the force and the compaction ratio.Comment: 5 page

    Roughness of tensile crack fronts in heterogenous materials

    Full text link
    The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent ζ=1/2\zeta=1/2, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history-dependent, and so our result gives a lower bound for ζ\zeta.Comment: 7 page

    Finite-distance singularities in the tearing of thin sheets

    Full text link
    We investigate the interaction between two cracks propagating in a thin sheet. Two different experimental geometries allow us to tear sheets by imposing an out-of-plane shear loading. We find that two tears converge along self-similar paths and annihilate each other. These finite-distance singularities display geometry-dependent similarity exponents, which we retrieve using scaling arguments based on a balance between the stretching and the bending of the sheet close to the tips of the cracks.Comment: 4 pages, 4 figure

    Dynamic stability of crack fronts: Out-of-plane corrugations

    Full text link
    The dynamics and stability of brittle cracks are not yet fully understood. Here we use the Willis-Movchan 3D linear perturbation formalism [J. Mech. Phys. Solids {\bf 45}, 591 (1997)] to study the out-of-plane stability of planar crack fronts in the framework of linear elastic fracture mechanics. We discuss a minimal scenario in which linearly unstable crack front corrugations might emerge above a critical front propagation speed. We calculate this speed as a function of Poisson's ratio and show that corrugations propagate along the crack front at nearly the Rayleigh wave-speed. Finally, we hypothesize about a possible relation between such corrugations and the long-standing problem of crack branching.Comment: 5 pages, 2 figures + supplementary informatio

    Solution of the Percus-Yevick equation for hard discs

    Full text link
    We solve the Percus-Yevick equation in two dimensions by reducing it to a set of simple integral equations. We numerically obtain both the pair correlation function and the equation of state for a hard disc fluid and find good agreement with available Monte-Carlo calculations. The present method of resolution may be generalized to any even dimension.Comment: 9 pages, 3 figure
    • 

    corecore