725 research outputs found
The Sudbury Mining District
In this paper will be given a brief history of the Sudbury Mining district and something of the geology and ore deposits of the same; also, a description of the mining and metallurgical methods used by the Canadian Copper Company in this district. Information on the various subjects treated was obtained partly from published literature by different authors but principally from a personal visit during the summer of 1905 to the country and mines descried
Letter to Charles Pettit McIlvaine
The beginnings of the Church of the Holy Spirithttps://digital.kenyon.edu/mcilvaine_letters/1365/thumbnail.jp
Spin waves in quasi-equilibrium spin systems
Using the Landau Fermi liquid theory we have discovered a new regime for the
propagation of spin waves in a quasi-equilibrium spin systems. We have
determined the dispersion relation for the transverse spin waves and found that
one of the modes is gapless. The gapless mode corresponds to the precessional
mode of the magnetization in a paramagnetic system in the absence of an
external magnetic field. One of the other modes is gapped which is associated
with the precession of the spin current around the internal field. The gapless
mode has a quadratic dispersion leading to some interesting thermodynamic
properties including a contribution to the specific heat. We also
show that these modes make significant contributions to the dynamic structure
function.Comment: 4 pages, 3 figure
Linguistics
Contains reports on three research projects.U. S. Air Force Electronics Systems Division) under Contract AF 19(628)-2487Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 36-039-AMC-03200(E)National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-05)National Aeronautics and Space Administration (Grant NsG-496
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
Low-Temperature Spin Diffusion in a Spin-Polarized Fermi Gas
We present a finite temperature calculation of the transverse spin-diffusion
coefficient, , in a dilute degenerate Fermi gas in the presence of a
small external magnetic field, . While the longitudinal diffusion
coefficient displays the conventional low-temperature Fermi-liquid behavior,
, the corresponding results for show three
separate regimes: (a) for ; (b) , for and large spin-rotation
parameter , and (c) for and . Our results are qualitatively consistent with the available
experimental data in weakly spin-polarized and mixtures.Comment: 13 pages, REVTEX, 3 figures available upon request, RU-94-4
Impurity Effects on the A_1-A_2 Splitting of Superfluid 3He in Aerogel
When liquid 3He is impregnated into silica aerogel a solid-like layer of 3He
atoms coats the silica structure. The surface 3He is in fast exchange with the
liquid on NMR timescales. The exchange coupling of liquid 3He quasiparticles
with the localized 3He spins modifies the scattering of 3He quasiparticles by
the aerogel structure. In a magnetic field the polarization of the solid spins
gives rise to a splitting of the scattering cross-section of for `up' vs.
`down' spin quasiparticles, relative to the polarization of the solid 3He. We
discuss this effect, as well as the effects of non-magnetic scattering, in the
context of a possible splitting of the superfluid transition for
vs. Cooper pairs for superfluid 3He
in aerogel, analogous to the A_1-A_2 splitting in bulk 3He. Comparison with the
existing measurements of T_c for B< 5 kG, which show no evidence of an A_1-A_2
splitting, suggests a liquid-solid exchange coupling of order J = 0.1 mK.
Measurements at higher fields, B > 20 kG, should saturate the polarization of
the solid 3He and reveal the A_1-A_2 splitting.Comment: 7 pages, 3 figure
Thermoelectric Figure of Merit of Strongly Correlated Superlattice Semiconductors
We solved the Anderson Lattice Hamiltonian to get the energy bands of a
strongly correlated semiconductor by using slave boson mean field theory. The
transport properties were calculated in the relaxation-time approximation,and
the thermoelectric figure of merit was obtained for the strongly correlated
semiconductor and its superlattice structures. We found that at room
temperature can reach nearly 2 for the quantum wire lattice structure.We
believe that it is possible to find high values of thermoelectric figure of
merit from strongly correlated semiconductor superlattice systems.Comment: 4 pages, 3 figure
Acoustic attenuation rate in the Fermi-Bose model with a finite-range fermion-fermion interaction
We study the acoustic attenuation rate in the Fermi-Bose model describing a
mixtures of bosonic and fermionic atom gases. We demonstrate the dramatic
change of the acoustic attenuation rate as the fermionic component is evolved
through the BEC-BCS crossover, in the context of a mean-field model applied to
a finite-range fermion-fermion interaction at zero temperature, such as
discussed previously by M.M. Parish et al. [Phys. Rev. B 71, 064513 (2005)] and
B. Mihaila et al. [Phys. Rev. Lett. 95, 090402 (2005)]. The shape of the
acoustic attenuation rate as a function of the boson energy represents a
signature for superfluidity in the fermionic component
No Massive Companion to the Coherent Radio-Emitting M Dwarf GJ 1151
The recent detection of circularly polarized, long-duration (>8 hr)
low-frequency (~150 MHz) radio emission from the M4.5 dwarf GJ 1151 has been
interpreted as arising from a star-planet interaction via the electron
cyclotron maser instability. The existence or parameters of the proposed
planets have not been determined. Using 20 new HARPS-N observations, we put
99th-percentile upper limits on the mass of any close companion to GJ 1151 at
Msini < 5.6 M earth. With no stellar, brown dwarf, or giant planet companion
likely in a close orbit, our data are consistent with detected radio emission
emerging from a magnetic interaction between a short-period terrestrial-mass
planet and GJ 1151
- …