17 research outputs found

    Microfabrication and its use in investigating fungal biology

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recorddata availability statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.Advances in microfabrication technology, and its increasing accessibility, allow us to explore fungal biology as never before. By coupling molecular genetics with fluorescence live-cell imaging in custom-designed chambers, we can now probe single yeast cell responses to changing conditions over a lifetime, characterise population heterogeneity and investigate its underlying causes. By growing filamentous fungi in complex physical environments, we can identify cross-species commonalities, reveal species-specific growth responses and examine physiological differences relevant to diverse fungal lifestyles. As affordability and expertise broadens, microfluidic platforms will become a standard technique for examining the role of fungi in cross-kingdom interactions, ranging from rhizosphere to microbiome to interconnected human organ systems. This review brings together the perspectives already gained from studying fungal biology in microfabricated systems and outlines their potential in understanding the role of fungi in the environment, health and disease.Wellcome TrustRoyal SocietyMedical Research Council (MRC

    Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans

    Get PDF
    This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordDirectional growth and tissue invasion by hyphae of the pathogenic fungus, Candida albicans, are disrupted by deletion of the small GTPase, Rsr1, which localizes Cdc42 and its kinase, Cla4, to the site of polarized growth. We investigated additional abnormalities observed in rsr1Δ hyphae, including vacuole development, cytoplasm inheritance, mitochondrial morphology, septin ring organization, nuclear division and migration, and branching frequency, which together demonstrate a fundamental role for Rsr1 in cellular organization. Rsr1 contains a C-terminal CCAAX box, which putatively undergoes both reversible palmitoylation and farnesylation for entry into the secretory pathway. We expressed variants of Rsr1 with mutated C244 or C245, or which lacked GTPase activity (Rsr1K16N and Rsr1G12V), in the rsr1Δ background and compared the resulting phenotypes with those of mutants lacking Bud5 (Rsr1 GEF), Bud2 (Rsr1 GAP), or Cla4. Bud5 was required only for cell size and bud site selection in yeast, suggesting there are alternative activators for Rsr1 in hyphae. Septin ring and vacuole dynamics were restored by expression of unpalmitoylated Rsr1C244S, which localized to endomembranes, but not by cytoplasmic Rsr1C245A or GTP/GDP-locked Rsr1, suggesting Rsr1 functions at intracellular membranes in addition to the plasma membrane. Rsr1K16N or cytoplasmic Rsr1C245A restored normal nuclear division but not septin ring or vacuole dynamics. Rsr1-GDP therefore plays a specific role in suppressing START, which can be signaled from the cytosol. Via differential palmitoylation and activity states, Rsr1 operates at diverse cell sites to orchestrate proper nuclear division and inheritance during constitutive polarized growth. As cla4Δ phenocopied rsr1Δ, it is likely these functions involve Cdc42-Cla4 activity. IMPORTANCE Understanding how single eukaryotic cells self-organize to replicate and migrate is relevant to health and disease. In the fungal pathogen, Candida albicans, the small GTPase, Rsr1, guides the directional growth of hyphae that invade human tissue during life-threatening infections. Rsr1 is a Ras-like GTPase and a homolog of the conserved Rap1 subfamily, which directs migration in mammalian cells. Research into how this single GTPase delivers complex intracellular patterning is challenging established views of GTPase regulation, trafficking, and interaction. Here, we show that Rsr1 directly and indirectly coordinates the spatial and temporal development of key intracellular macrostructures, including septum formation and closure, vacuole dynamics, and nuclear division and segregation, as well as whole-cell morphology by determining branching patterns. Furthermore, we categorize these functions by differential Rsr1 localization and activity state and provide evidence to support the emerging view that the cytosolic pool of Ras-like GTPases is functionally active.Society for Experimental BiologyWellcome TrustRoyal SocietyMedical Research Council (MRC)University of AberdeenUniversity of Exete

    Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans

    Get PDF
    Acknowledgements AB conceived the project and wrote the manuscript. CVG conceived the experimental design. SW designed the GCaMP reporter. AM, KL, LV-M, SC and TB constructed strains and optimised imaging. MF developed the image analysis software. CVG and CP carried out the microfluidics experiments and imaging analysis. NG assisted with preparation of the manuscript. PS, SN and DMR developed and undertook the theoretical data analysis and contributed to the interpretation of the results. Funding AB, CG and TB were funded by the Wellcome Trust [Grant number 206412/A/17/Z]. AB and DR were supported by a Wellcome Trust Institutional Strategic Support Award (WT204909/Z/16/Z). CP was funded by a University of Exeter studentship (113516). This work was also supported by a Royal Society URF (UF080611), an MRC NIRG (G0900211/90671) and the MRC-Centre for Medical Mycology at the University of Exeter (MR/N006364/2). DR was funded by the Medical Research Council (MR/P022405/1). SN was supported by the Medical Research Council via the GW4 BioMed2 DTP (MR/W006308/1). MCA was supported by a European Commission ITN ‘FungiBrain’ studentship (607963). LL and SC were funded by a Wellcome Trust Institutional Strategic Support Award to the University of Aberdeen. NG acknowledges support of Wellcome Trust Investigator, Collaborative, Equipment, Strategic and Biomedical Resource awards (101873, 200208, 215599, 224323). NG and AB thank the MRC (MR/M026663/2) for support. This study/research is funded by the National Institute for Health and Care Research (NIHR) Exeter Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans

    Get PDF
    This is the final version. Available on open access from the American Society for Microbiology via the DOI in this recordIntracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail.Wellcome TrustUniversity of ExeterRoyal SocietyMedical Research Council (MRC)European CommissionNational Institute for Health and Care Research (NIHR

    Phylogenetic analysis of Croatian orf viruses isolated from sheep and goats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Orf virus </it>(ORFV) is the prototype of the parapoxvirus genus and it primarily causes contagious ecthyma in goats, sheep, and other ruminants worldwide. In this paper, we described the sequence and phylogenetic analysis of the B2L gene of ORFV from two natural outbreaks: i) in autochthonous Croatian Cres-breed sheep and ii) on small family goat farm.</p> <p>Results</p> <p>Sequence and phylogenetic analyses of the ORFV B2L gene showed that the Cro-Cres-12446/09 and Cro-Goat-11727/10 were not clustered together. Cro-Cres-12446/09 shared the highest similarity with ORFV NZ2 from New Zealand, and Ena from Japan; Cro-Goat-11727/10 was closest to the HuB from China and Taiping and Hoping from Taiwan.</p> <p>Conclusion</p> <p>Distinct ORFV strains are circulating in Croatia. Although ORFV infections are found ubiquitously wherever sheep and goats are farmed in Croatia, this is the first information on genetic relatedness of any Croatian ORFV with other isolates around the world.</p

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality

    Get PDF
    Background and purpose: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. Methods: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). Results: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P&lt;0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P&lt;0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. Conclusions: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Global Impact of the COVID-19 Pandemic on Cerebral Venous Thrombosis and Mortality.

    Get PDF
    BACKGROUND AND PURPOSE: Recent studies suggested an increased incidence of cerebral venous thrombosis (CVT) during the coronavirus disease 2019 (COVID-19) pandemic. We evaluated the volume of CVT hospitalization and in-hospital mortality during the 1st year of the COVID-19 pandemic compared to the preceding year. METHODS: We conducted a cross-sectional retrospective study of 171 stroke centers from 49 countries. We recorded COVID-19 admission volumes, CVT hospitalization, and CVT in-hospital mortality from January 1, 2019, to May 31, 2021. CVT diagnoses were identified by International Classification of Disease-10 (ICD-10) codes or stroke databases. We additionally sought to compare the same metrics in the first 5 months of 2021 compared to the corresponding months in 2019 and 2020 (ClinicalTrials.gov Identifier: NCT04934020). RESULTS: There were 2,313 CVT admissions across the 1-year pre-pandemic (2019) and pandemic year (2020); no differences in CVT volume or CVT mortality were observed. During the first 5 months of 2021, there was an increase in CVT volumes compared to 2019 (27.5%; 95% confidence interval [CI], 24.2 to 32.0; P<0.0001) and 2020 (41.4%; 95% CI, 37.0 to 46.0; P<0.0001). A COVID-19 diagnosis was present in 7.6% (132/1,738) of CVT hospitalizations. CVT was present in 0.04% (103/292,080) of COVID-19 hospitalizations. During the first pandemic year, CVT mortality was higher in patients who were COVID positive compared to COVID negative patients (8/53 [15.0%] vs. 41/910 [4.5%], P=0.004). There was an increase in CVT mortality during the first 5 months of pandemic years 2020 and 2021 compared to the first 5 months of the pre-pandemic year 2019 (2019 vs. 2020: 2.26% vs. 4.74%, P=0.05; 2019 vs. 2021: 2.26% vs. 4.99%, P=0.03). In the first 5 months of 2021, there were 26 cases of vaccine-induced immune thrombotic thrombocytopenia (VITT), resulting in six deaths. CONCLUSIONS: During the 1st year of the COVID-19 pandemic, CVT hospitalization volume and CVT in-hospital mortality did not change compared to the prior year. COVID-19 diagnosis was associated with higher CVT in-hospital mortality. During the first 5 months of 2021, there was an increase in CVT hospitalization volume and increase in CVT-related mortality, partially attributable to VITT

    Impact of physical and mechanical properties of rocks on energy consumption of jaw crusher

    No full text
    The aim of this paper was to determine the impact of physical and mechanical properties of rocks on the electricity consumption of a jaw crusher during crushing. This paper presents a different approach to determine the energy consumption during comminution. The energy required for crushing rocks was obtained by direct measurement of crusher's motor power during the crushing of samples. Laboratory tests were used to determine the following physical and mechanical properties of the tested samples: bulk density, compressive strength, tensile strength, hardness, and fracture toughness. After that, the laboratory jaw crusher crushing tests were conducted. In the first part of the study, the individual rock samples were crushed one by one. In the second part of the test, multiple samples were crushed simultaneously. By measuring the energy consumption for crushing rocks with different physical and mechanical properties, we explored the dependence of energy required for crushing on individual mechanical properties of rocks and the simultaneous effect of the properties. Using statistical analysis of the influence of individual mechanical properties we found that the greatest influence on energy consumption for crushing was compressive strength. Fracture toughness and tensile strength of the rocks had a significant impact on the crushing energy. The effect of bulk density was not large while for the hardness could not be stated that it had influence. By the analysis of deviations of specific crushing energy calculated using equations obtained by multiple regression analysis of simultaneous influence of multiple mechanical properties of rocks and from the measured values, it was found that the dependence obtained on the basis of all investigated properties showed the smallest deviation and dependence obtained by compressive strength, fracture toughness, and hardness showed significantly smaller deviation. By examining the influence of mechanical rock properties on particle size of crushed material it was found that the increase in compressive strength increased the proportion of larger particles while other properties showed no effect

    Dynamic calcium-mediated stress response and recovery signatures in the fungal pathogen, Candida albicans

    No full text
    ABSTRACT Calcium (Ca2+) is an important second messenger for activating stress response signaling and cell adaptation in eukaryotic cells yet intracellular Ca2+-dynamics in fungi are poorly understood due to lack of effective real-time Ca2+ reporters. We engineered the GCaMP6f construct for use in the fungal pathogen, Candida albicans, and used live-cell imaging to observe both dynamic Ca2+ spiking and slower changes in non-spiking Ca2+-GCaMP signals elicited by stress or gene deletion. Short-term exposure to membrane, osmotic or oxidative stress generated immediate stress-specific responses and repeated exposure revealed differential recovery signatures. Osmotic stress caused yeast cell shrinkage and no adaptation response, where Ca2+-GCaMP spiking was inhibited by 1 M NaCl but not by 0.666 M CaCl2. Treatment with sodium dodecylsulfate (SDS) caused a spike-burst, raised the non-spiking Ca2+-GCaMP signals, and caused significant cell death, but surviving cells adapted over subsequent exposures. Treatment with 5 mM H2O2 abolished spiking and caused transient non-GCaMP-related autofluorescence, but cells adapted such that spiking returned and autofluorescence diminished on repeated exposure. Adaptation to H2O2 was dependent on Cap1, extracellular Ca2+, and calcineurin but not on its downstream target, Crz1. Ca2+-dynamics were not affected by H2O2 in the hog1Δ or yvc1Δ mutants, suggesting a pre-adapted, resistant state, possibly due to changes in membrane permeability. Live-cell imaging of Ca2+-GCaMP responses in individual cells has, therefore, revealed the dynamics of Ca2+-influx, signaling and homeostasis, and their role in the temporal stress response signatures of C. albicans. IMPORTANCE Intracellular calcium signaling plays an important role in the resistance and adaptation to stresses encountered by fungal pathogens within the host. This study reports the optimization of the GCaMP fluorescent calcium reporter for live-cell imaging of dynamic calcium responses in single cells of the pathogen, Candida albicans, for the first time. Exposure to membrane, osmotic or oxidative stress generated both specific changes in single cell intracellular calcium spiking and longer calcium transients across the population. Repeated treatments showed that calcium dynamics become unaffected by some stresses but not others, consistent with known cell adaptation mechanisms. By expressing GCaMP in mutant strains and tracking the viability of individual cells over time, the relative contributions of key signaling pathways to calcium flux, stress adaptation, and cell death were demonstrated. This reporter, therefore, permits the study of calcium dynamics, homeostasis, and signaling in C. albicans at a previously unattainable level of detail
    corecore