155 research outputs found

    Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations

    Get PDF
    Airborne concentrations of the wood smoke tracers, levoglucosan and fine potassium have been measured at urban and rural sites in the United Kingdom alongside measurements with a multi-wavelength aethalometer. The UK sites, and especially those in cities, show low ratios of levoglucosan to potassium in comparison to the majority of published data. It is concluded that there may be two distinct source types, one from wood stoves and fireplaces with a high organic carbon content, best represented by levoglucosan, the other from larger, modern appliances with a very high burn-out efficiency, best represented by potassium. Based upon levoglucosan concentrations and a conversion factor of 11.2 from levoglucosan to wood smoke mass, average concentrations of wood smoke including winter and summer sampling periods are 0.23 μg m<sup>−3</sup> in Birmingham and 0.33 μg m<sup>−3</sup> in London, well below concentrations typical of other northern European urban areas. There may be a further contribution from sources of potassium-rich emissions amounting to an estimated 0.08 μg m<sup>−3</sup> in Birmingham and 0.30 μg m<sup>−3</sup> in London. Concentrations were highly correlated between two London sites separated by 4 km suggesting that a regional source is responsible. Data from the aethalometer are either supportive of these conclusions or suggest higher concentrations, depending upon the way in which the data are analysed

    Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry

    Get PDF
    9 pages, 3 figures, 1 table, supplementary data http://dx.doi.org/10.1016/j.atmosenv.2016.01.018Brake dust particles were characterised using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) operated using two inlet configurations, namely the aerodynamic lens (AFL) inlet and countersunk nozzle inlet. Laboratory studies show that dust particles are characterised by mass spectra containing ions deriving from Fe and Ba and although highly correlated to each other, the Fe and Ba signals were mostly detected using the nozzle inlet with relatively high laser desorption energies. When using the AFL, only [56Fe] and [−88FeO2] ions were observed in brake dust spectra generated using lower laser desorption pulse energies, and only above 0.75 mJ was the [138Ba] ion detected. When used with the preferred nozzle inlet configuration, the [−88FeO2] peak was considered to be the more reliable tracer peak, because it is not present in other types of dust (mineral, tyre, Saharan etc). As shown by the comparison with ambient data from a number of locations, the aerodynamic lens is not as efficient in detecting brake wear particles, with less than 1% of sampled particles attributed to brake wear. Five field campaigns within Birmingham (background, roadside (3) and road tunnel) used the nozzle inlet and showed that dust particles (crustal and road) accounted for between 3.1 and 65.9% of the particles detected, with the remaining particles being made up from varying percentages of other constituentsThis work was supported by the UK National Centre for Atmospheric SciencePeer Reviewe
    • …
    corecore