2 research outputs found

    Searching for an Added Value of Precipitation in Downscaled Seasonal Hindcasts over East Africa: COSMO-CLM Forced by MPI-ESM

    Get PDF
    Downscaling of seasonal hindcasts over East Africa with the regional climate model (RCM) COSMO-CLM (CCLM), forced by the global climate model (GCM) and MPI-ESM, is evaluated. The simulations are done for five months (May to September) for a ten-year period (2000–2009), with the evaluation performed only for June to September. The dry years, 2002 and 2009, and the wet years, 2006 and 2007, are well captured by the models. By using ground based and satellite gridded observation data for evaluation it is found that both COSMO-CLM and MPI-ESM overestimate June to September precipitation over the Ethiopian highlands and in parts of the lowland with respect to all reference datasets. In addition we investigated the potential and real added value for both the RCM and the GCM hindcasts by upscaling (arithmetic mean) the precipitation resolution both in temporal and in spatial scales, over North Ethiopia (EN), South Ethiopia (ES), South Sudan (SS), and Sudan (S). Results inferred that using the RCM for seasonal forecast adds value in capturing extreme precipitation years, especially in the Ethiopian highlands. It is also found that the potential and relative potential added value decrease with decreasing the temporal resolution

    Associating Synoptic-Scale Weather Patterns with Aggregated Offshore Wind Power Production and Ramps

    No full text
    Large-scale weather patterns and their variability can influence both the amount of wind power production and its temporal variation, i.e., wind power ramps. In this study, we use a self-organizing map to cluster hourly sea level pressure into a discrete number of weather patterns. The dependency of wind power production and wind power ramps on these weather patterns is studied for the Belgian offshore wind farm fleet. A newly developed wavelet-surrogate ramp-detection algorithm is used for the identification of wind power ramps. It was observed that low-pressure systems, southwesterly and northeasterly wind flows are often associated with high levels of wind power production. Regarding wind power ramps, the type of transition between weather patterns was shown to determine whether ramp up or ramp down events would occur. Ramp up events tend to occur due to the transition from a high-pressure to a low-pressure system, or the weakening of the intensity of a deep low-pressure system. The reverse is associated with ramp down events
    corecore