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Downscaling of seasonal hindcasts over East Africa with the regional climate model (RCM) COSMO-CLM (CCLM), forced by
the global climate model (GCM) and MPI-ESM, is evaluated. The simulations are done for five months (May to September) for a
ten-year period (2000–2009), with the evaluation performed only for June to September.The dry years, 2002 and 2009, and the wet
years, 2006 and 2007, are well captured by the models. By using ground based and satellite gridded observation data for evaluation
it is found that both COSMO-CLM andMPI-ESM overestimate June to September precipitation over the Ethiopian highlands and
in parts of the lowland with respect to all reference datasets. In addition we investigated the potential and real added value for
both the RCM and the GCM hindcasts by upscaling (arithmetic mean) the precipitation resolution both in temporal and in spatial
scales, over North Ethiopia (EN), South Ethiopia (ES), South Sudan (SS), and Sudan (S). Results inferred that using the RCM for
seasonal forecast adds value in capturing extreme precipitation years, especially in the Ethiopian highlands. It is also found that the
potential and relative potential added value decrease with decreasing the temporal resolution.

1. Introduction

Truthful and reliable seasonal rainfall prediction is impor-
tant for social and economic value for the East African
countries, which are susceptible to floods and droughts
recurrently for many years. The recent flood years 2006 and
2007 [1] (http://www.pecad.fas.usda.gov/) and in 2010-2011
(http://reliefweb.int/) and 1984, 2002, and 2009 are drought
years [2] over East Africa which are the typical examples.
In this region, the economy is highly dependent on rain-
fed agriculture and pastoral economy. The main rainfall
season varies from region to region in Ethiopia. For instance,
southern Ethiopia depends strongly on spring (February–
May) precipitation, whereas June to September (JJAS) is
the main rainy season in central and northern Ethiopia.
Regionally, JJAS contributes to more than 70% of the annual
precipitation in the central, north, and northwest Ethiopia;

October-November is the second rainy season in the south
and southeast, providing 20–26% of the total annual pre-
cipitation. During December to January, all parts of the
country receive less than 6% of the total annual precipitation
[2].

Ethiopia is an East African country. Its agricultural and
food grain production depend strongly on JJAS precipi-
tation to secure adequate food supply. For instance, June
to September rainfall contributes 85–90% to crop produc-
tion in Ethiopia [3]. Understanding seasonal fluctuations of
precipitation in distribution, amount, onset, and cessation
has an important contribution for the crop calendar of the
country. Segele and Lamb [4] found that rainfall onset and
cessation over Ethiopia are influenced by the strength of
the Tropical Easterly Jet (TEJ), the ENSO phase (El Niño
Southern Oscillation), and sea surface temperatures (SST) in
the Indian Ocean and the Arabian Sea.
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The demand of reliable climate information is increasing
in the last decades for agriculture crop yield production [5],
health impacts [6, 7], and water resources [8]. The impact
assessment tool, “Livelihoods, Early Assessment and Protec-
tion” (LEAP) (http://www.agriskmanagementforum.org/),
was built in 2008 by the Ethiopian Drought Insurance project
(EDI). The Ethiopian government, the World Food Program
(WFP), and the World Bank established LEAP as an inte-
grated food security early warning response. This research is
a preparation study to evaluate the regional seasonal forecasts
of the past (hindcasts) in order to implement the regional
seasonal forecast into the LEAP, early warning, and food
security prototype.

Predictability of seasonal rainfall depends on the ability of
the prediction systems to quantify the depth and the flow of
moisture, regional and global systems, and the atmospheric
dynamics that initiate seasonal precipitation [9]. Large-scale
teleconnections, such as ENSO, and the Indian Ocean Dipole
affect East African rainfall by influencing the position of
ITCZ and strength of the regional convective systems [10, 11].
Thewet phase of ENSO is associated with a deficiency of JJAS
rainfall over the Ethiopian highlands. Another contributor is
the Tropical Easterly Jet (TEJ), which is the most important
upper level feature for the summer rainfall in Ethiopia. A
stronger (weaker) TEJ is generally associated with longer
(shorter) wet spells [4]. Circulation at lower levels also plays a
significant role on seasonal rainfall amount and distribution,
wheremoisture flux from the Indian andAtlantic Oceans and
the intensities and positions of the Mascarene and St. Helena
high pressure systems affect East Africa precipitation [12].
Previous studies on seasonal rainfall forecast of East Africa
have found that June to September precipitation is governed
by tropical western Indian Ocean sea surface temperature
(SST), Niño 3.4 region [13], ENSO Phases [14], and SST of
Indian, Atlantic, and Pacific Ocean [15].

Due to the development in high-performance computing
and data availability on both spatial and temporal scales,
major studies have been carried out through the use of a
global climate model (GCM). However, GCMs often fail in
capturing regional fine scale features and processes because
of their coarse grid spacing, which is approximately 200 km.
This problem can be solved to some extent by downscaling,
either statistically or dynamically, the GCM outputs. Statisti-
cal downscaling is computationally simple and efficient; how-
ever it needs long historical data and also depends on the rela-
tion of predictor and predictand.The dynamical downscaling
technique uses a regional climatemodel (RCM) that has been
applied for operational climate prediction and/or weather
forecast to provide climate information for socioeconomic
development on a regional scale in most parts of the world.
RCMs have been widely used in simulating the climate over
midlatitude regions; however a few studies considered the
climate of the African region [16–21]. Those studies revealed
that the regional climate models capture intraseasonal vari-
ations of precipitation over Africa; the rainfall intensity is
strongly determined by the applied convection scheme, the
structure of the development of storm circulation is well
simulated, and an increase of vertical resolution improves the
precipitation andwind field simulation. In a recent dynamical

seasonal hindcast study over East Africa, Diro et al. [22]
found that the regional climatemodel reproduces both spatial
and interannual variability of seasonal rainfall and captures
the teleconnection between ENSO and regional precipitation
structure. However, it has to be taken into account that the
dynamical seasonal downscaling depends on the quality of
the GCM data which are used for initial and lateral boundary
conditions.

Simulations of precipitation by regional climate models
generally add values by incorporating local processes and
internal model physics [23]. The regional climate model
COSMO-CLM (or CCLM), which is used in this study, is
generally able to reproduce the broad and basic features of the
African climate [24]. For example, COSMO-CLM is able to
capture the seasonal temperature comparable to other RCMs
[25, 26] with a bias generally ranging between + and −2∘C
over Africa.

The aim of this paper is to investigate the potential of
COSMO-CLM to predict rainfall over East Africa forced by
the global climate model MPI-ESM in a seasonal hindcast
setup. Precipitation and its spatial and temporal bias with
respect to observed and satellite gridded precipitation data is
the main focus of this study.

Another subject of this paper is the evaluation of the
added value ofCOSMO-CLMseasonal hindcast precipitation
over East Africa. The potential advantage of a RCM is to
improve the simulation of small scale climate processes that
are not well described by a low-resolution global circulation
model [27]. A broader range of fine spatial scales is explicitly
resolved by improving the representation of surface forcing
such as mountains, water bodies, and coastal regions.

Therefore, an added value (AV) can be attributed to
RCM simulations in climate variability at scales that are
not explicitly resolved by GCMs (AV1) and should further
improve the simulation of climate in those scales that are
common to both RCMs and GCMs (AV2) [27].

Added value is categorized as “real added value” when
used with respect to observed data and “potential added
value” by aggregating themodel output onto a coarse grid vir-
tual regional climate model. Since the current paper focuses
on precipitation only, the potential added value is defined
as the difference between high resolution precipitation and
coarse resolution aggregated precipitation.

In summary, the aims of this study are (i) to evaluate the
potential of both theCOSMO-CLMand theMPI-ESMmodel
in performing seasonal hindcasts of the JJAS cycle and their
interannual variability of precipitation over East Africa, (ii) to
evaluate the spatial bias of COSMO-CLMandMPI-ESMover
East African lowlands and Ethiopian mountainous regions,
(iii) to investigate the precipitation frequency distribution
over multiple scales as well as extreme precipitation, and (iv)
to evaluate real and potential added value of precipitation
over East Africa using the methods of Di Luca et al. [27,
28].

This paper is organized as follows. Section 2 describes the
data and methods. In Section 3 the performance of COSMO-
CLM seasonal hindcasts is described; Section 4 discusses
the added value and extreme precipitation indices. Finally in
Section 5 we conclude and summarize the results.
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Figure 1: Simulation domain over East Africa, where the colour scale shows the elevation (m) over the entire region. The boxes represent
the four investigated subregions: North Ethiopia (EN: green), South Ethiopia (ES: blue), South Sudan (SS: red), and Sudan (S: purple). The
different panels show the representation of the grid in each region for the calculation of potential and relative potential added value: (a)
original 0.22∘, (b) 0.44∘, (c) 0.88∘, (d) 1.76∘, (e) 3.72∘, and (f) 7.04∘.

2. Description of the Region

Spatial precipitation is analysed over East Africa, a region
which is highly variable in precipitation amount and distri-
bution, orography, and ecological aspects. Temporal precipi-
tation is therefore analysed in detail for the subregions: North

Ethiopia (EN), South Ethiopia (ES), Sudan (S), and South
Sudan (SS) (Figure 1 and Table 1).

Each region with the exception of ES experiences rainfall
more than 2mm/d during the June to September months as
the different observational data show in Figure 2. Orographic
height and land surface characteristics of each region are
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Figure 2: Spatial distribution of mean daily precipitation (mm/d) for ARC2 (first row), GPCC (second row), TAMSAT (third row), TRMM
(fourth row), COSMO-CLM (fifth row), and MPI-ESM (last row). Each column represents, respectively, June, July, August, September, and
JJAS mean precipitation of 2000–2009.

quite different. A brief description of the used subregions is
given below.

North Ethiopia (EN). It is a region where highly distinct
mountainous terrain exists with the highest mountain (and
the tenth highest in Africa) being found with summits reach-
ing up to 4,550m height. This region receives an immense
amount of tropical convective rainfall [29].

South Ethiopia (ES). The southern part of Ethiopia is covered
by dense forests and lakes such as Abaya and Chamo and

Turikana. In this region the Omo National Park, Nechisar
National Park, and Sibiloi National Park are located. The
hydrological cycle of this region is very stable and experiences
two rainy seasons,March-April-May (MAM) and September-
October-November (SON) [30].

South Sudan (SS). In contrast to the above-mentioned regions
SS is described by savannas, a huge swamp region and
jungle in the southern part. As described in [30] this region
receives maximum rainfall from April to October and stays
dry in the remaining months. The main sources for moisture
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Table 1: Geographical coordinates of the selected regions (cf.
Figure 1).

Name Region
Lon (∘E) lat (∘N)

EN 34.00–41.05 7.887–14.9
ES 34.00–41.05 0.83–7.87
S 26.76–34.00 7.87–14.9
SS 26.76–34.00 0.83–7.87

are the south-westerly monsoon winds from the Atlantic
Ocean and south-easterly monsoon from the Indian Ocean.
The intertropical convergence zone (ITCZ) migration also
governs the temporal and spatial variability of rainfall.

Sudan (S).This lowland region ismostly characterized by bare
land.The latter two regions are highly vulnerable with respect
to negative rainfall anomalies during a season.

3. Model Setup and Data

The initial and boundary conditions of COSMO-CLM were
taken from the Earth System Model MPI-ESM [31]. It is
worthmentioning here that these results were available in the
process of preparation for a seasonal forecasting system.MPI-
ESM couples the atmosphere, ocean, sea-ice, and land and
was used in a CMIP5-close configuration. The configuration
and evaluation of the seasonal forecast system is described in
[32]. It has to be taken into account that themodel resolution,
both in atmosphere and in ocean, is quite coarse with T63
(∼240 km grid distance) in the atmosphere and 1.5∘ grid
distance in the tropical ocean.

The COSMO-CLM model is a nonhydrostatic limited-
area weather/climate model based on the thermohydrody-
namical equations, describing compressible flow in a moist
atmosphere [33, 34]. The model is formulated on rotated
geographical coordinates with a generalized terrain following
height coordinate system. Convection is parameterized by
a Tiedtke convection scheme [35]. In the present study,
COSMO-CLM was set to a 0.22∘ horizontal resolution,
covering the East African regions as shown in Figure 1.

We chose to study the first ten years of the second
millennium, since strong anomalies occurred in this decade.
In 2006 and 2007 East Africa experienced floods and in
2009 a drought occurred. Further, this period is documented
very well by different observational, ground based, and
satellite datasets as well as reanalyses such as TAMSAT,
TRMM,ARC2, andGPCC,which could provide an improved
platform to assess the current results. Therefore, the hindcast
simulations with COSMO-CLM are performed for the ten
years 2000 to 2009, from May to September, where May
is used as spin-up period and therefore discarded from
the current analysis. This period also overlaps with periods
chosen by the EUPORIAS (European Provision of Regional
Impact Assessment on a Seasonal to Decadal Timescale)
project, which is a strategic approach to provide an improved
skill in seasonal prediction over East African region.

As mentioned above, a number of surface gridded obser-
vations and ground based and satellite data are used to
evaluate the seasonal hindcasts of East Africa precipitation.
One is a newly reconstructed Africa Rainfall Climatology
(ARC2) [36], combining the recent recalibrated infrared (IR)
imagery European Meteorological Satellite (EUMETSAT)
and daily rain gauge data. It provides nearly real time data
of daily rainfall estimation at 0.1∘ horizontal resolution and is
used for the Africa Famine Early Warning System (AFEWS)
impact assessment tool. An available satellite rainfall product
is TAMSAT (Tropical Applications of Meteorology using
Satellite Data), which is based on IR observations at 0.0375∘
horizontal resolution over Africa [37]. Over Africa TAMSAT
is used as input for early warning assessment tools and
food security applications. Data from another satellite, the
Tropical Rainfall Measuring Mission (TRMM) Multisatel-
lite Precipitation Analysis 3B42 version 7 [38], combine
observations from rain gauges, geostationary infrared (IR),
and low-earth orbiting passive microwave (MW), based on
cloud top brightness temperature at cold cloud tops. Rainfall
estimates are scaled to monthly rainfall provided by the
Global Precipitation Climatological Center (GPCC) [39].
TRMM is available at 0.25 spatial horizontal resolution and
at daily temporal resolution from 1998 to 2010.

By comparing TAMSAT and ARC2 against rain gauges
over Ethiopia it has been found that both underestimate
the rainfall amount. However, TAMSAT shows good skill
in detecting rainy events while ARC2 underestimates the
frequency of rainy events [30]. Meanwhile, Tropical Rainfall
Measuring Mission (TRMM) consistently performs best in
detecting rainy events and capturing the mean rainfall and
seasonal variability [30]. A Global Precipitation Climatology
Center (GPCC) product based on gauged monthly precip-
itation data for the global land surface available at 0.5∘
horizontal resolution [40] is also used in this study for the
model evaluation.

4. Methods

We standardize the precipitation products by taking out the
climatological mean and divide the anomalies by standard
deviation to investigate climatological rainfall anomalies.
Hart and Grumm [41] used normalized departures from
climatology to objectively rank synoptic-scale events. Root
mean square error (RMSE) and mean difference (bias) are
also measured for nonstandardized precipitation amount to
evaluate the simulated precipitation error with reference to
the gridded precipitation datasets.

To evaluate the added value of regional climate model
we use real and potential added value metrics as suggested
by Di Luca et al. [27, 28]. Real added value uses observed
datasets to evaluate the regional climate model output. On
the other hand, the maximum achievable added value of a
RCM is called the potential added value. FollowingDi Luca et
al. [27, 28], real added value (AV) and potential added value
(PAV) are calculated.

For the calculation of the spatial real added value (rAV),
we use the formulation from the recently published paper on
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CORDEX Africa [42] which was adapted from Di Luca et al.
[28]:

rAV =
(𝑋GCM − 𝑋Obs)

2

− (𝑋RCM − 𝑋Obs)
2

Max ((𝑋GCM − 𝑋Obs)
2

, (𝑋RCM − 𝑋Obs)
2

)

. (1)

rAV is positive if the squared error of the RCM is less than
GCM’s squared error. 𝑋 in this paper is the temporal mean
precipitation.The normalization is introduced such that −1 ≤
rAV ≤ 1. If rAV > 0 the RCM has added value whereas rAV <
0 RCM has no added value.

Potential and relative potential added values for extreme
precipitation values, 90th and 95th percentiles, are evaluated
for COSMO-CLM and ARC2 due to availability of data on a
daily temporal scale. For the calculation of potential added
value, the high resolution regional climate model output is
aggregated into a coarse resolution regional climate model
scale, called virtual GCM (vGCM), following Di Luca et al.
[27]. The multiscale resolution approach is applied in order
to find the scale dependence of precipitation on spatial and
temporal resolution [27, 43].

The difference between the high resolution RCM and the
coarse resolution vGCM climatic statistics can be highlighted
as PAV measure:

PAV𝑛,𝑚 = 𝑋𝑛,𝑚RCM − 𝑋
𝑛,𝑚

vGCM, (2)

where 𝑋 is the 90th or 95th percentile value of precipitation.
The superscripts 𝑛 and 𝑚 indicate the temporal and spatial
scale, respectively. As stated above, 𝑋RCM refers to the high
resolution RCM at 0.22∘and 𝑋vGCM is the aggregated value
at low horizontal resolution of 3.54∘. The relative potential
added value (rPAV) is the ratio of potential added value (PAV)
to the high resolution precipitation value [27]:

rPAV𝑛,𝑚 = PAV
𝑛,𝑚

𝑋

𝑛,𝑚

RCM
= 1 −

𝑋

𝑛,𝑚

vGCM
𝑋

𝑛,𝑚

RCM
. (3)

rPAV is varying from 0 to 1. An rPAV close to zero indicates
that no fine scale information is added by the RCM to the
vGCM, whereas for rPAV ∼ 1 the climatic statistic 𝑋 is
determined by fine scale information.

We perform spatial filtering by aggregating COSMO-
CLM and ARC2 daily precipitation from the original resolu-
tion (0.22∘) into multiple low resolutions (0.44∘, 0.88∘, 1.66∘,
3.52∘, and 7.04∘) step by step by computing an arithmetic spa-
tial mean over each grid box separately for the four regions.

The temporal filtering is also done by aggregating daily
precipitation into low temporal resolution (2 days, 4 days,
8 days, and 16 days). We discuss daily and 16-day potential
added value and 90th and 95th percentiles aggregated pre-
cipitation with respect to multiscale horizontal resolution.
The 16-day spatial aggregation is used to deduct how strong
the small scale features provide information at low temporal
scale.

5. Results and Discussions

5.1. Performance of COSMO-CLM Seasonal Hindcast Simu-
lations. In this section, we discuss the performance of the

seasonal hindcast simulations with COSMO-CLM over East
Africa.The spatial distribution and the bias of COSMO-CLM
and MPI-ESM precipitation are investigated. The variation
of June to September daily precipitation and its standardized
interannual variability are analysed over the selected regions
with respect toARC2, GPCC, COSMO-CLM, andMPI-ESM.
For the same regions, temporal RMSE and mean difference
(bias) are calculated.

5.2. Spatial Structure of Precipitation. Figure 2 displays the
10-year mean of each month and the 4-month mean for all
datasets investigated in this study. Daily mean rates are used
here to stay consistent in terms of unit with the following
investigated metrics. As a general feature it can be seen
that precipitation increases in amount and distribution over
the course of the rainy season and reaches peak values
in August. During JJAS, northern mountainous (highland)
Ethiopia benefits mostly from the rainfall, whereas South
West and South East Ethiopia receive less rain during the
season. There are, however, some discrepancies in the spatial
distribution of precipitation among the observed gridded
datasets. The GPCC shows the strongest values compared to
ARC2, because the number of gauged stations used is max-
imum compared with ARC2, while the climatology ARC2
displays very low precipitation amount due to unavailability
of daily Global Telecommunication System (GTS) report in
real time and deficiencies in satellite estimate over coastal and
orographic areas [30, 39]. The satellite TAMSAT is stronger
than ARC2 in capturing peak rainfall amount over the high-
lands of Ethiopia, because its rainfall estimated calibration is
done with a large database of historical rain gauge observa-
tions, and the calibration varies monthly and seasonally to
account for local and seasonal variations between cloud top
temperature and rainfall [30].TheTRMM3B42 shows similar
values as GPCC in amount and distribution over East Africa.
The precipitation amount (>8mm/d) of the JJAS average
over the Ethiopian highlands appears in all precipitation
products, except in the ARC2. This has been already found
by Young et al. [30]. TAMSAT precipitation amount is similar
to ARC2 which shows low precipitation over Ethiopian
highland in June and September compared toTRMM,GPCC,
and global and regional model precipitation output. We
observe similar behaviour in precipitation amount between
TRMM, GPCC, TAMSAT, COSMO-CLM, and MPI-ESM
over Ethiopian highland in June, July, August, September,
and JJAS. However, in September TAMSAT shows low values
of precipitation. TRMM, GPCC, and TAMSAT precipita-
tion distribution is consistent over South Sudan. Again,
the high precipitation values in August and September are
not captured by TAMSAT and ARC2 but are observed in
the other observation datasets. TRMM 3B42 and GPCC
agree in amount and distribution over East Africa, especially
over Ethiopian highlands, Northern Tanzania, and South
Sudan.

In contrast to the observed data COSMO-CLM andMPI-
ESM simulated rainfall amounts behave differently. First,
both models already show high values in June, July, August,
and September over highland of Ethiopia. Second, in August



Advances in Meteorology 7

35 40 45 50 5530 35 40 45 50 5530

−5

0

5

10

15

20

−5

0

5

10

15

20

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

CCLM—ARC2 MPI-ESM—ARC2

(a)

35 40 45 50 553035 40 45 50 5530

−5

0

5

10

15

20

−5

0

5

10

15

20

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

CCLM—GPCC MPI-ESM—GPCC

(b)

35 40 45 50 5530

−5

0

5

10

15

20

35 40 45 50 5530

−5

0

5

10

15

20

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

CCLM—TAMSAT MPI-ESM—TAMSAT

(c)

35 40 45 50 5530

−5

0

5

10

15

20

35 40 45 50 5530

−5

0

5

10

15

20

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

−4

−2

0

2

4

6

8

10

12

Pr
ec

ip
ita

tio
n 

(m
m

/d
)

CCLM—TRMM MPI-ESM—TRMM

(d)

Figure 3: Spatial bias of JJAS average daily precipitation for COSMO-CLM (first row) and MPI-ESM (second row) from top to down with
respect to ARC2, GPCC, TAMSAT, and TRMM.

and September not only the values but also the distribution
differs as the models show very high precipitation amounts
over South Sudan with MPI-ESM precipitating further south
than COSMO-CLM. In summary, global and regional model
results are compared to a selected dataset for the average over
the whole seasonal hindcast period of JJAS and found that

COSMO-CLM does capture the heavy precipitation events
reasonably well over the Ethiopian highlands.

COSMO-CLM exhibits a wet bias with respect to all
reference precipitation datasets over the Ethiopian high-
lands, South Sudan, and western parts of Yemen (Figure 3).
MPI-ESM also has the wet bias over Southwestern and
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Northeastern parts of Ethiopia and low wet bias over central
Ethiopia with respect to all reference datasets. However, mag-
nitude and spatial extension of the MPI-ESM wet bias over
the Ethiopian mountainous region are smaller compared to
COSMO-CLM.Overmost parts of Somalia, Kenya, Tanzania,
andUganda both COSMO-CLM andMPI-ESM show a slight
dry bias. Over Northern Sudan, a dry bias in MPI-ESM is in
contrast to no or a slight wet bias in COSMO-CLM.Themost
remarkable differences between the models occur over South
Sudan and Rwanda, with a dry bias in the global and a wet
bias in the regional model. TRMM and GPCC have similar
rainfall amount and distribution; therefore the spatial bias
value and its distribution are comparable for COSMO-CLM
andMPI-ESM inmost parts of the region (Figures 2 and 3). In
general, COSMO-CLM and MPI-ESM show a predominant
wet bias for the region where JJAS is the main rainy season,
for instance, Ethiopia. However, for regions where MAM is
the main rainy season, COSMO-CLM and MPI-ESM show
mainly a dry bias, for example, Kenya.

In Table 2 the rootmean square error andmean difference
(bias) are calculated over the four selected regions (region
information is given in Table 1). COSMO-CLM and MPI-
ESM precipitation data are evaluated with respect to the
reference datasets ARC2, TAMSAT, TRMM, and GPCC. It
can be seen that COSMO-CLM has a wet (positive) bias
with respect to all reference datasets over all the regions
and a higher RMSE compared to the MPI-ESM. The highest
RMSE value for COSMO-CLM is found compared to all
observations over the EN region, with 5.6 (mm/d) with
respect to TAMSAT and with 1.63 (mm/d) with respect to
TRMM. For MPI-ESM, the situation is different with only
TAMSAT showing the highest RMSE value over the EN
region, whereas values are highest with respect to ARC2 over
ES and with respect to GPCC and TRMM over the S region.

Generally, the precipitation of COSMO-CLM shows a
higher statistical bias and root mean square error compared
with the bias and root mean square error of MPI-ESM over
most of the selected regions. Similar results were obtained
by Dosio et al. [42] who performed and analysed CMIP5
scenarios over CORDEX Africa among them CCLM driven
by MPI-ESM. Their comparison of downscaled precipitation
showed that CCLM has a higher bias and RMSE than
MPI-ESM-LR. It is speculated that CCLM double counts
precipitation generated by the convection scheme and on
the grid scale. Mariotti et al. and Laprise et al. [23, 44] also
showed that RCM physics (soil parameterization, convection
schemes, etc.) play a significant role in reproducing the
regional precipitation distribution over Africa.

5.3. Temporal Precipitation Structures. The seasonal precip-
itation cycles are analysed as a domain average over the
four selected regions. The gridded datasets ARC2, TAM-
SAT, TRMM, and GPCC as well as the global and the
regional model are compared for each region as shown
by monthly climatology in Figure 4. The ARC2 values are
clearly the lowest, especially over the EN and ES region,
again confirming the results of Young et al. [30]. Taking
GPCC as reference, COSMO-CLM overestimates daily mean

Table 2: RMSE and mean difference (bias) of JJAS daily precip-
itation (mm/d) averaged over the four regions for COSMO-CLM
(CCLM, (a)) and MPI-ESM (b).

(a)

Region RMSE Bias

CCLM versus GPCC

EN 1.91 1.83
ES 0.97 0.61
S 1.23 0.94
SS 0.78 0.29

CCLM versus ARC2

EN 3.65 3.59
ES 2.06 1.98
S 1.89 1.64
SS 1.33 1.18

CCLM versus TAMSAT

EN 5.6 5.62
ES 1.39 1.22
S 3.42 3.32
SS 2.30 2.26

CCLM versus TRMM

EN 1.63 1.53
ES 1.23 0.98
S 1.07 0.73
SS 0.80 0.05

(b)

Region RMSE Bias

MPI-ESM versus GPCC

EN 0.57 −0.07

ES 0.897 0.70

S 0.91 −0.86

SS 0.75 −0.37

MPI-ESM versus ARC2

EN 1.83 2.03

ES 2.10 1.68

S 0.57 −0.16

SS 0.73 0.52

MPI-ESM versus TAMSAT

EN 3.74 3.71

ES 1.38 1.31

S 1.59 1.52

SS 1.65 1.60

MPI-ESM versus TRMM

EN 0.70 −0.37

ES 1.20 1.07

S 1.17 −1.07

SS 0.93 −0.61

precipitation, especially over the EN and S region and over
ES and SS in July, August, and September. In comparison
with ARC2, TRMM precipitation overestimates over S and
SS regions. On the other hand, TAMSAT rain amount does
not agree with ARC2 and GPCC rains over EN and ES
regions; however, the difference between the datasets is less
over S and SS regions. COSMO-CLM shows high standard
deviation and the highest daily values, especially in July,
August, and September over the EN and S regions while
MPI-ESM displays lower values. In general, observations and
models overlap in most months and regions within their
standard deviation.
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Figure 4: Daily mean precipitation (mm/d) of June to September averaged over the selected regions. Bars indicate the standard deviation.

In Figure 5 we present the interannual variability of our
data. The precipitation is standardized by subtracting the
climatological mean of 2000–2009 from each month and
dividing it by the standard deviation of 2000–2009. The
different observational datasets do not seem to agree with
each other in the course of a ten-year period. ARC2 and
GPCC show in 2000, 2004, and 2009 the highest differences
in precipitation anomalies over the EN region. Regionally, the
discrepancies between ARC2 and GPCC are lower over the
ES, S, and SS regions, except over the Sudan region in 2001.
TAMSAT variability is out of phase for the years 2006 and
2008. In contrast, GPCCandTRMMshow consistent features
for all years and regions (see also the high correlation). One
reason of this diverse behaviour might be the orography of
this region where interpolation algorithms are most difficult.
The mountains generally act as a barrier for airflow that
could challenge the satellite rainfall estimation [30]. In
general, satellites experience more difficulties in detecting

precipitation over land than over the ocean. The modelled
anomalies of COSMO-CLMandMPI-ESM look quite similar
for all regions. However, compared with gridded datasets
significant difference is observed over ES, S, and SS in 2001
and 2004. The 2006 and 2007 wet years and 2002 and 2009
dry years are well captured by COSMO-CLM, especially over
the EN region where June to September is the main rainy
season.

The Pearson correlation of the JJAS mean precipitation is
calculated for the observational and model data with GPCC
as reference dataset for the mean JJAS precipitation. CCLM
outperforms MPI-ESM over EN whereas for the other three
regions the skill of bothmodel forecasts is comparable.While
still some signal shows up over the Sudan (S) region, for
SS and especially ES, both models have huge difficulties
in getting the signals right. In addition, the correlation of
GPCC with the other observational datasets confirms the
large discrepancies between them.
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Figure 5: Interannual variability of standardized daily precipitation (mm/d) and JJAS mean. Rainfall correlations (observed and modelled
with respect to GPCC) are shown inside the figure boxes.

5.4. Added Value. In this section we discuss both the real
and potential added value of COSMO-CLM for East Africa.
We investigate the potential added value comparing TRMM,
ARC2, and COSMO-CLM precipitation products upscaled
from 0.22∘ to coarser resolution to understand the variation
of extreme precipitation with horizontal resolution and the
presence of small scale process over selected regions.

5.4.1. Real Added Value. In Figure 3 we found that COSMO-
CLMandMPI-ESMproduce awet bias over themountainous
highlands of Ethiopia and a dry bias overmost of the lowlands
of East Africa. In this section, the added value of COSMO-
CLM versus MPI-ESM precipitation with respect to the
reference datasets ARC2, GPCC, TRMM, and TAMSAT is
discussed for the months June to September and the JJAS
average. Following (1) (Section 2), COSMO-CLM has the
added value if its normalized mean square error is smaller
than the normalized mean square error of MPI-ESM, so that
rAV is greater than 0. In contrast to the RMSE comparison
above separately for COSMO-CLM and MPI-ESM, we put
all data onto a common grid and investigate the spatial fields

here. But, in this case, the RMSE is normalized to get the
spatial index ranges from −1 (RCM no added value) to 1
(RCM perfect added value) as shown in (1).

The spatial fields of real added value of COSMO-CLM
with respect to the reference precipitation datasets for each
month and for the JJAS average are shown in Figure 6.
From Table 2 we know that the RMSE of COSMO-CLM is
higher than the RMSE ofMPI-ESM for almost all regions and
datasets.Thebest coincidence between themodels is given for
the southern regions with respect to GPCC and TRMM.

Taking this and the discussion of Figure 5, we discard
TAMSAT in the further discussion because of their highly
different behaviour to ARC2, TRMM, and GPCC. Looking at
Figure 6, we find large regions with added value of COSMO-
CLM, especially in the southern part and for the beginning
of the rainy season also in the Northern Sudan region. The
Ethiopian mountains are obviously a quite difficult region for
COSMO-CLM.

In general, the added value over South Ethiopia and the
missing added value over the central northern mountains of
Ethiopia are a consistent feature in all datasets. It would be
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Figure 6: Maps of real added value of COSMO-CLM over MPI-ESM: from top to down with respect to GPCC, ARC2, and TRMM. Each of
the columns represents, respectively, June, July, August, September, and JJAS average.

highly interesting if ensemble simulations of COSMO-CLM
would help to give a better estimate for the precipitation over
the Ethiopian mountains.

5.4.2. Potential and Relative Potential Added Value. By up-
scaling high resolution regional climate model output into
coarser virtual resolutions comparable to GCM scales, it is
possible to identify the presence of potential small scale
features which are to be resolved by the regional climate
model [27].

As an index of extreme precipitation, we use the 90th
and 95th percentile value of daily and 16-day precipitation to
evaluate the ideal added value of our RCM for the selected
regions of East Africa. Based on this, we adopt the multiscale
resolution methods of [27] to evaluate the potential and rela-
tive potential added value of COSMO-CLM over East Africa.

The results are summarized in Figure 7. Daily extreme
precipitation has high potential added value compared to the
16-day aggregated precipitation (Figures 7(a) and 7(c)) due to
averaging out of extreme values.

Potential added value is a metric used for an indication
for the existence of small scale features. However, for easy
comparison and visualization of the total added value of small
scale features, we normalized potential added value with
respect to the high resolution precipitation 95th percentile
value to get the metric, relative potential added value (rPAV).
The value of rPAV ranges from 0 (no added value) to 1
(perfect added value). We find that COSMO-CLM, TRMM,

and ARC2 have higher rPAV over the ES and EN region than
over S and SS, with the difference in magnitude being higher
for TRMM and ARC2 than for COSMO-CLM (Figure 7(b)).
The rPAV for the 16-day aggregated extreme precipitation
(Figure 7(d)) drops down strongly for all regions in the
TRMM and ARC2 dataset and a little bit in the COSMO-
CLMmodel.The rPAV value of COSMO-CLM is higher than
that of TRMM and ARC2 over the regions EN, S, and SS.The
reason for maximum rPAV over the EN and the ES regions
could be that both regions have distinct mesoscale features
such as the domain that is near to the coast, large parks, and
high mountains compared with the regions SS and S. The
steady drop of COSMO-CLM potential added value over EN
region is an indication that COSMO-CLM simulates extreme
precipitation over EN, and in its rPAV the value is normalized
and follows the trend of other datasets. The higher value of
relative potential added value of TRMMandARC2 compared
to COSMO-CLM suggests that COSMO-CLMdoes not com-
pletely resolve the small scale processes, even though ARC2
underestimates and TRMM overestimates total precipitation
compared to other gridded precipitation datasets. Over the
four regions which have distinct orographic features, a high
relative potential added value is observed over EN and ES
regions which are characterized by steep and sharp relief.

5.5. Frequency Distribution of Multiscale Precipitation. To
investigate the variation of precipitation in frequency and
in amount across aggregated spatial and temporal virtual
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Figure 7: Potential (left) and relative potential (right) added value of daily (top) and 16-day aggregated (bottom) precipitation from ARC2,
TRMM, and COSMO-CLM over the 4 East African regions; (a) daily PAV, (b) daily rPAV, (c) 16-day PAV, and (d) 16-day rPAV.

resolution in daily and up to 16-day sum, precipitation is
aggregated from high spatial resolution (0.22∘) to low virtual
spatial resolution (7.04∘) and from high temporal resolution
(daily) to low temporal resolution (16 days). The relative fre-
quency of precipitation in multiscale horizontal resolution is
calculated for binned daily precipitation for June to Septem-
ber of 2000–2009 over each region (Figure 8) for COSMO-
CLM, TRMM, and ARC2. Comparing the virtual resolu-
tions, we observe that (i) the lowest precipitation (<1mm/d)
shows the highest frequency at high resolution, (ii) low to
medium precipitation (5–10mm/d) occurs predominantly at
the vGCM scale, and (iii) the highest precipitation events
most frequently occur in high resolution. The frequency
distribution of the regional model resolution only changes
considerably for very coarse resolution. The ARC2 seems to
be really sensitive to a changing horizontal scale.

For the medium range of daily precipitation (5–20mm/
d), it is found that highest frequencies occur at the lowest
resolution scale, for example, with a maximum of 20mm/d
at 3.52∘ grid resolution over North Ethiopia for COSMO-
CLM and TRMM, with maximum value of 10mm/d at 3.52∘
over North Ethiopia for ARC2 and over South Ethiopia
for COSMO-CLM, ARC2, and TRMM spatially aggregated
precipitation.

For heavy precipitation (>50mm/d), again a higher
frequency is found for all regions at the highest spatial
resolution, 0.22∘. The extreme precipitation frequency of
COSMO-CLM is higher than that of ARC2 over all regions.

We find similar relative frequency distributions for the
regions Sudan (S) and South Sudan (SS) (not shown).
Comparing frequency of precipitation at fine and coarse reso-
lution, high frequency of extreme precipitation is captured at
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Figure 8: Frequency distribution of daily precipitation for COSMO-CLM (top), ARC2 (middle), and TRMM (bottom) over multiscale
resolution for North Ethiopia (EN, left) and South Ethiopia (ES, right). Coloured bars show the different spatial resolutions.

fine resolution, while medium range precipitation frequency
is captured at coarse resolution.

5.6. Multiscale Extreme Precipitation. We consider the spatial
aggregated variation of 90th and 95th percentile of daily
summer precipitation (June to September) to describe the
extremes of the period 2000–2009 overmultiscale resolutions
in each region. The extreme precipitation value is reduced in
coarse resolution in both daily and 16-day multiscale reso-
lution which is in direct relation to the spatial and temporal

resolutions (Figure 9). The main reason is that at high reso-
lution small features which lead to extremes are resolved by
the regional climate model. In Figure 9(b), we see that at the
lowest resolution (7.04∘) the 95th percentile gap between the
different regions is reduced in both daily and 16-day temporal
resolutions comparedwith the highest resolution (0.22∘).This
indicates a reduced influence of small scale processes on
coarser grid resolution. But this is not the case for ARC2,
where the difference between the regions is approximately
constant through the different resolutions, with exception of
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Figure 9: 95th percentile of precipitation (mm/d) for different horizontal resolutions and regions; for COSMO-CLM (blue), TRMM (green),
and ARC2 (red) and (a) daily over EN and ES, (b) 16 days over EN and ES, (c) daily over S and SS, and (d) 16 days over S and SS regions.

the ES region. The results for the 90th percentile are very
similar (data not shown). In general, comparing the daily
extreme precipitation at fine resolution (0.22∘) and at virtual
coarse resolution we found that the extreme precipitation is
reasonably well captured at the fine resolution.

6. Discussion and Conclusions

We investigated the performance of downscaled seasonal
hindcasts (JJAS, 2000–2009) over East Africa by using MPI-
ESM-LR as the driving and COSMO-CLM as the downscal-
ing model. Precipitation was the variable of interest. The
gridded reference precipitation datasets ARC2, TAMSAT,
TRMM, and GPCC are used to evaluate the performance of
MPI-ESM and COSMO-CLM precipitation over this region.
We selected four different regions in order to distinguish
between different orography and land surface conditions.
Evaluation of model results over East Africa turns out to be

a challenge since already observational datasets differ con-
siderably from each other (see, e.g., Figure 2). For instance,
ARC2 underestimates precipitation comparing to all other
reference datasets. This is similar to the finding of [30]. The
same applies to TAMSAT, but TRMMappears to overestimate
precipitation. Compared with the given reference datasets,
we find that COSMO-CLM overestimates the mean June
to September precipitation over the Ethiopian mountainous
regions. This is in line with findings from other studies. For
example, in the study of dynamically downscaled seasonal
hindcasts of Diro et al. [22], the RCM, RegCM3 also overesti-
mates precipitation over the Ethiopian highlands and under-
estimates precipitation over the Ethiopian lowland areas.The
coordinate regional domain experiment (CORDEX) Africa
data used [45] and found that most of the investigated RCMs
overestimate precipitation over East African regions. The
overestimation of precipitation over the Ethiopian highland is
due to interaction of the local and the regional climate system.
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The propagation of upper level easterly waves into Africa
from Indian Ocean enhances convective development and
the interaction of this convection with Ethiopian highlands
activates the development ofmore organized convection [29].
Such strong interaction results in the grid-scale precipitation
and forms intense updrafts which can produce much latent
heating, too much precipitation, too low pressure, and other
inappropriate feedbacks.

COSMO-CLM captures well the monthly climatological
precipitation pattern as seen in Figure 5 and the interannual
variability of precipitation anomalies, even though there
are discrepancies between observed datasets and simulated
precipitation anomalies. COSMO-CLMalso captures well the
dry years 2002 and 2009, and the wet years 2006 and 2007,
especially over the Ethiopian highlands. Comparing the bias
ofMPI-ESM andCOSMO-CLMprecipitationwith respect to
reference precipitation datasets, COSMO-CLMhas a wet bias
with respect to all reference datasets while MPI-ESM shows
a wet bias with respect to TAMSAT over all regions and over
the ES region with respect to GPCC, TRMM, and ARC2 but
a dry bias anywhere else. The root mean square error taken
from the regional average of COSMO-CLM is smaller than
the root mean square error of MPI-ESM over the SS and
S regions with respect to TRMM. However, over any other
region the COSMO-CLM RSME is higher than the MPI-
ESM RMSE with respect to all reference datasets. It has to be
questioned though, if RMSE is the (only) appropriate score to
evaluate precipitation. Because of its high discrete behaviour,
precipitation generated from convective regimes like over
East Africamight easily lead to a higher RMSE in a small scale
model. It does not necessarily mean that a higher resolution
cannot result in better forecast information. This applies as
well to the discussion on the added value results, because it
is based on RMSE comparison. For the real added value of
COSMO-CLM using gridded datasets as reference, we found
that COSMO-CLM has no added value over the Ethiopian
highlands. This is quite an unexpected result because one
would assume that especially over complex terrain dynamical
downscaling could improve the forecast. Apart from the
discussion about proper scores, the reason for this behaviour
is still speculative. We assume that the overperformance
of rainy events might be the “double-penalty” problem in
the scales where convection and grid-scale precipitation are
competitivewith each other, as discussed above byMekonnen
and Rossow [29]. Over the other regions, there is quite real
added value, even though there are large discrepancies in the
results from one reference dataset to the other dataset. For
instance, over parts of South Ethiopia COSMO-CLM adds
value with reference to GPCC, TRMM, ARC2, and TAMSAT.
The search of real added value of regional climate over East
Africa needs further investigation using ground truth dataset
as well as advanced metrics with more ensemble members’
simulation.

Furthermore, the use ofmultiscale resolution approach to
evaluate the potential added value ofCOSMO-CLMby aggre-
gating in space from high spatial resolution (0.22∘) to low
virtual spatial resolution (7.04∘) helps us to identify a region
where dominantmesoscale features are present.The temporal
aggregation of daily to 16-day temporal resolution indicates

the relative influence ofmesoscale features in regional climate
model compared with daily scale, and we found that the
potential influence of mesoscale on extreme precipitation,
95th percentile, is reduced in 16-day time scale (Figure 9).
The frequency distribution of an amount of precipitation
in multiscale resolution approach indicates that extreme
precipitation is aggregated in high spatial resolution, and in
16-day temporal virtual resolution the extreme precipitation
is reduced in an amount comparedwith daily scale (Figure 8).

The frequency of extreme precipitation value of the 95th
percentiles of on day (daily) and 16 days is reduced in low
temporal virtual resolution (Figure 9).

The PAV and the rPAV are important tools to identify the
regions where small scale local features are dominant. The
magnitude of relative potential added value is proportional
to the presence of local features such as elevation, land, and
water bodies of North Ethiopia (EN), South Ethiopia (ES),
Sudan (S), and South Sudan (SS). However, we observe a gap
inmagnitude of rPAV between TRMM,ARC2, and COSMO-
CLM of 95th percentile precipitation indices. Compared to
TRMM and ARC2, COSMO-CLM underestimates the PAV
and rPAV value of the 95th percentiles, in which we speculate
that COSMO-CLM that is forced by MPI-ESM does not
completely resolve the dynamics of mesoscale features.

In this study, we evaluated the added value of COSMO-
CLM precipitation using gridded precipitation datasets. We
tried to apply the findings of Di Luca et al. [27, 28] over
the region of East Africa. We found indeed regions with
added value but considering the whole domain the results are
not always clearly indicating the benefit of a higher resolved
model. This might be due to different reasons:

(i) The observational database is difficult to regard as a
reliable source for model comparison because of large
uncertainties among the datasets.

(ii) The application of COSMO-CLM over East Africa,
especially over the mountainous regions, might need
further tuning.

(iii) Di Luca et al. [27, 28] applied their added value
approach to a completely different climatological
regime than is investigated here.

(iv) The use of RMSE could limit the view of the forecast
quality a regionalmodel can provide.Next studieswill
take this into account.

(v) Further work will also include more ensemble mem-
bers, in order to get more robust results.

Taken together, the question, whether dynamical downscal-
ing over East Africa helps to improve seasonal forecasts,
cannot finally be answered out of this study.There is still room
for improvement on all aspects considered here.
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