7 research outputs found

    Ecology of Aedes Mosquitoes, the Major Vectors of Arboviruses in Human Population

    Get PDF
    Aedes aegypti (Stegomyia) has been human vectors for many human diseases globally. In recent years, dengue virus has been diagnosed in different regions such as Asia and Latin America vectored by Aedes spp. mosquitoes. Dengue cases have been reported again in the several parts of African and other continental hospital. The different types of breeding sites have been found to be abundant in both urban and rural areas. The abundance of adult Ae. aegypti and habitat productivity in different settings escalates the risk of dengue transmission if viruses are found in asymptomatic population. The insecticide resistance has been found to occur in the wild population of Aedes aegypti to insecticides commonly used for indoor residual spray and long-lasting insecticidal net treatments. The control of human vector population is still a challenge as the vector has a diurnal feeding and outdoor resting behavior. Environmental management is still the best practice to be adopted in many countries for Aedes aegypti control. The currently discovered dengue vaccine might be an immediate arsenal for the community immunization

    Oviposition Deterrence Induced by Ocimum kilimandscharicum and Ocimum suave Extracts to Gravid Anopheles gambiae s.s (Diptera: Culicidae) in Laboratory

    No full text
    Background: In most of the past decades, mosquito control has been done by the use of indoor residual spray and insecticides-treated bed nets. The control of mosquitoes by targeting the breeding sites (larval habitat) has not been given priority. Disrupting the oviposition sensory detection of mosquitoes by introducing deterrents of plant origin, which are cheap resources, might be add value to integrated vector control. Such knowledge is required in order to successfully manipulate the behavior of mosquitoes for monitoring or control. Materials and Methods: Twenty gravid mosquitoes were placed in a cage measuring 30 Χ 30 Χ 30 cm for oviposition. The oviposition media were made of different materials. Experiments were set up at 6:00 pm, and eggs were collected for counting at 7:30 am. Mosquitoes were observed until they died. The comparisons of the number of eggs were made between the different treatments. Results: There was significant difference in the number of eggs found in control cups when compared with the number of eggs found in water treated with Ocimum kilimandscharicum (OK) (P=0.02) or Ocimum suave (OS) (P=0.000) and that found in water with debris treated with OK (P=0.011) or OS (P=0.002). There was no significant difference in the number of eggs laid in treated water and the number of eggs laid in water with debris treated either with OK (P=0.105) or OS (P=0.176). Oviposition activity index for both OS and OK experiments lay in a negative side and ranged from −0.19% to −1%. The results show that OS and OK deter oviposition in An.gambiae s.s. Conclusions: Further research needs to be done on the effect of secondary metabolites of these plant extracts as they decompose in the breeding sites. In the event of favorable results, the potential of these plant extracts can be harnessed on a larger scale

    Bio-efficacy of deltamethrin based durable wall lining against wild populations of Anopheles gambiae s.l. in Northern Tanzania

    Get PDF
    BackgroundIndoor residual spraying (IRS) is one of the preferred tools used for control of malaria in many settings in the world. However, this control tool still faces challenges that include lack of long lasting active ingredient, limited number of well-trained personal, and need of repeated treatment which increases operational costs and reduces acceptability by residents. As a result there is need to develop and validate other methods which can complement the existing controls. The current study compared the bio-efficacy of durable wall lining (DL) (treated with deltamethrin 265 mg/m2) and IRS (with deltamethrin 5% WP at 20 mg/m2) on indoor mosquitoes densities and biting behaviour of mosquitoes in comparison with control houses without either DL or IRS.MethodsA study with two treatment arms and a control was conducted in Magugu ward, Northern Tanzania. Overall, a total of 60 houses were selected for the study with 20 houses per treatment arm and control. From each arm and control five houses were selected for mosquitoes trapping. Mosquitoes were sampled from 18:00 to 07:00 hourly every month for a period of 6 months. Mosquitoes were sampled using CDC miniature light traps.ResultsA total of 14,400 female wild mosquitoes were used for contact bioassays in the control arm. 20 houses were sprayed, additionally walls of 20 houses were installed with wall liners, and walls of 20 unsprayed houses were used as control. Also, a total of 946 mosquitoes were sampled with traps in 60 houses during the hourly sampling for 6 months. A total of 3000 unfed females of An. gambiae s.l. wild population raised from larvae were collected from natural habitats in the same village for bioassays. The decline in indoor mosquitoes densities observed in this study did not lead to a shift in the biting cycles (P = 0.712). The number of mosquitoes caught indoors in houses with DL and IRS was significantly lower (P < 0.001) compared to control houses. When the comparisons were done between DL and IRS houses, the densities were significantly lower in DL houses compared to IRS houses (P = 0.021). In the DL installed houses, indoor mosquito density declined notably and sustained throughout the 6 months of the study. However, in those houses sprayed with deltamethrin 5% WP (PALIâ„¢5 WP), the density noted to start to increase within four months after spraying(do you mean to say that the densities declined up to 4 months post spraying and thereafter increased.ConclusionsConsidering the efficacy duration of DL against IRS with deltamethrin 5% WP on mosquito densities decline indoors. The results of this study suggest that DL is more effective in malaria control as its efficacy lasted more than that of IRS

    Social economic factors and malaria transmission in Lower Moshi, Northern Tanzania

    No full text
    Abstract Background For many years social economic status has been used as an indicator to characterize malaria treatment seeking behaviors of communities and their adherence to malaria control programs. The present study was therefore conducted to assess the influence of household social economic status, knowledge, attitude and practice on treatment seeking behaviors, distance to health facilities and vector control measures in the Lower Moshi area, northern Tanzania. Methods A cross-sectional household survey was carried out, a quantitative method was used to collect information from the households, and the household socio-economic status was estimated by employing a household asset-based approach. The structured questionnaire also collected information on malaria knowledge, attitudes and treatment seeking behaviors. Results A total of 197 (68.8% were female) household heads were interviewed. Distance to the health centers influenced malaria treatment seeking behaviors especially for children (P = 0.001) and the number of visits to the health facilities made by the household members (P = 0.001). The head of the households' level of education had an influence on bed-net retreatment (P P Conclusion Distance to the health centre influenced malaria treatment seeking behaviors, and the number of visits made by the household members. In addition, the education level of the household heads played a role in understanding and in the selection of malaria interventions for the households. Increasing the number of health facilities close to rural areas will improve malaria treatment seeking behavior, case management and hence reduce malaria-associated morbidities, especially in high risk groups.</p
    corecore