5 research outputs found

    Simultaneous Quantitative Determination of Different Ceramide and Diacylglycerol Species in Cultured Cells by Using Liquid Chromatography鈥揈lectrospray Tandem Mass聽Spectrometry

    Get PDF
    A sensitive, reproducible reverse-phased high performance liquid chromatography electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) method with simple sample preparation was developed for the simultaneous determination of a wide range of ceramides, diacylglycerols (DAGs) in cultured cells. Chromatographic separation of the compounds was achieved in a 14-minute run using a C8 column with a gradient elution by methanol and 10 mM ammonium acetate buffer as mobile phase at a flow rate of 0.5 ml/min. Various ceramides, DAGs were detected with a triple quadrupol system in multiple reaction monitoring mode, which is based on a soft positive electrospray ionization. The usual sample preparation process was shortened by the application of pure methanol for the extraction instead of the widely used methanol/chloroform mixture. C17:0 ceramide which does not occur in the cell samples, was used as an internal standard. The sample preparation process was optimized and the methodology was tested on a human hepatocarcinoma cell culture. Our results clearly showed accumulation of some ceramides and DAGs in the cells treated with BSA-conjugated palmitate for 8 hours. Since both ceramides and DAGs are important lipid intermediates and signal messengers, alteration in their cellular levels have major impact on cell functions, and thus our novel analytic method can be widely used in lipotoxicity research. The presented technique can be further developed to measure other intermediates of ceramide synthesis and other derivatives of DAGs as well

    A novel method of molecular imprinting applied to the template cholesterol

    Get PDF
    A novel method is successfully tested for non-covalent imprinting. Conditions are used which practically exclude the formation of prepolymerization complexes. The template is cholesterol, and no so-called functional monomer is used. The polymers contain only an acrylic diester crosslinker. The porogen isopropanol prevents even hydrogen bonding between the template and the monomer in the prepolymerization solution. Despite of these apparently very disadvantageous conditions, appreciable imprinting factors for cholesterol and imprinted selectivity against some other steroids are observed, similar to other cholesterol MIPs with proven analytical usefulness

    The Selectivity of Immunoassays and of Biomimetic Binding Assays with Imprinted Polymers

    No full text
    Molecularly imprinted polymers have been shown to be useful in competitive biomimetic binding assays. Recent developments in materials science have further enhanced the capabilities of imprinted polymers. Binding assays, biological and biomimetic alike, owe their usefulness to their selectivity. The selectivity of competitive binding assays has been characterized with the cross-reactivity, which is usually expressed as the ratio of the measured IC50 concentration values of the interferent and the analyte, respectively. Yet this cross-reactivity is only a rough estimate of analytical selectivity. The relationship between cross-reactivity and analytical selectivity has apparently not been thoroughly investigated. The present work shows that this relationship depends on the underlying model of the competitive binding assay. For the simple but widely adopted model, where analyte and interferent compete for a single kind of binding site, we provide a simple formula for analytical selectivity. For reasons of an apparent mathematical problem, this formula had not been found before. We also show the relationship between analytical selectivity and cross-reactivity. Selectivity is also shown to depend on the directly measured quantity, e.g., the bound fraction of the tracer. For those cases where the one-site competitive model is not valid, a practical procedure is adopted to estimate the analytical selectivity. This procedure is then used to analyze the example of the competitive two-site binding model, which has been the main model for describing molecularly imprinted polymer behavior. The results of this work provide a solid foundation for assay development

    The Selectivity of Molecularly Imprinted Polymers

    No full text
    The general claim about novel molecularly imprinted polymers is that they are selective for their template or for another target compound. This claim is usually proved by some kind of experiment, in which a performance parameter of the imprinted polymer is shown to be better towards its template than towards interferents. A closer look at such experiments shows, however, that different experiments may differ substantially in what they tell about the same imprinted polymer鈥檚 selectivity. Following a short general discussion of selectivity concepts, the selectivity of imprinted polymers is analyzed in batch adsorption, binding assays, chromatography, solid phase extraction, sensors, membranes, and catalysts. A number of examples show the problems arising with each type of application. Suggestions for practical method design are provided

    Adsorption of Hydrophobic Ions on Environmentally Relevant Sorbents

    No full text
    Environmental monitoring and remediation often requires the collection of harmful substances from aqueous solutions. Absorption with solids is a useful technique for binding such substances even at very low concentration levels. Many of these contaminants are weak acids or bases. Some novel, nonionic polymeric sorbents, such as hypercrosslinked polymers or polymers with balanced hydrophilic-lipophilic properties (HLB) have been found to bind weak acids and bases with high distribution coefficients even at pH values where these compounds are almost completely ionized (typically near pH 7). To understand this phenomenon and its practical consequences, we have experimentally studied the adsorption of ionizable weak acids and bases as a function of pH and ionic strength on a the OASIS® HLB sorbent. Not surprisingly, the ionic forms of the weak acids and bases were found to be much less bound in the aqueous solution than their neutral forms. In spite of this, OASIS® HLB binds weak acids and bases around pH 7 considerably better than typical hydrophobic sorbents. The high overall distribution coefficients around pH 7 could be explained by two factors. One is that on OASIS® HLB, and on some other novel polymeric sorbents, the binding constant of the moderately hydrophobic neutral form is on the order of 100,000, i.e., much higher than on typical hydrophobic sorbents. Thus, even if the proportion of the neutral form in solution is only around 1% near pH 7, the adsorption of the neutral form is still significant. On the other hand, the binding of the apparently hydrophilic ionized forms occurs with distribution coefficients well above 100. The distribution coefficient of the ionic form appears to depend on ionic strength and the presence of competing ions. Adsorption of the ionic forms is found to be very similar to the adsorption of ionic surfactants. The pH dependence of the total adsorption of neutral and ionic forms together, is found to be steep around pH 7, and therefore the varying pH of natural waters may strongly influence the binding efficiency in practical applications, such as the collection (concentration) of contaminants or their passive sampling
    corecore