6 research outputs found

    Reviewing next of kin regrets in surgical decision-making: cross-sectional analysis of systematically searched literature

    No full text
    Background: Decision-making concerning relatives undergoing surgery is challenging. It remains unclear to what extent implicated next of kin eventually regret their decisions and how this regret is assessed. Our aim was to systematically review the literature on decisional regret of next of kin and to describe the assessment tools used and the surgical populations studied. Methods: We included interventional or observational, quantitative or qualitative studies reporting the measurement of decisional regret of next of kin concerning relatives undergoing surgery. We searched a variety of databases without restriction on publication year. We assessed the quality of reporting of quantitative studies using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies and of qualitative studies using the Critical Appraisal Skills Program Checklist. Results: Thirteen cross-sectional, five prospective cohorts and five qualitative studies matched our inclusion criteria. In 18 studies (78%), patients were children, in five (22%), young or middle-aged adults. No study included elderly or frail patients. Thirteen studies (57%) used the original Decision Regret Scale which was validated for patients, but not for next of kin. Only 3 of the 18 (17%) quantitative studies and only one of the 4 (25%) qualitative studies were rated as "good" in the quality assessment. Conclusion: None of the retrieved studies used validated tools to assess the decisional regret of next of kin and none of them examined this issue in elderly or frail surgical patients.</p

    Local anaesthetics risks perception : a web-based survey

    No full text
    Background: The use of local anaesthetics (LAs) is usually associated with few adverse effects, but local anaesthetic systemic toxicity (LAST) can result in serious harm and even death. However, practitioner awareness regarding this risk has been little studied. Methods: This was a closed, web-based study carried out at two Swiss university hospitals using a fully automated questionnaire. The main objective was to evaluate LAST awareness and LA use among various medical practitioners. The secondary objective was to determine whether these physicians felt that a tool designed to compute maximum safe LA doses should be developed. Results: The overall participation rate was 40.2 % and was higher among anaesthesiologists (154/249, 61.8 % vs 159/530, 30.0 %; P &lt; .001). Anaesthesiologists identified the risk of LAST and the systems involved more frequently than non-anaesthesiologists (85.1 % vs 43.4 %, P &lt; .001). After adjusting for years of clinical experience, age, country of diploma, frequency of LA use, clinical position and being an anaesthesiologist, the only significant associations were this latter factor (P &lt; .001) and clinical position (P = .016 for fellows and P = .046 for consultants, respectively). Most respondents supported the development of a tool designed to compute maximum safe LA doses (251/313, 80.2 %) and particularly of a mobile app (190/251, 75.7 %). Conclusions: LAST awareness is limited among practitioners who use LAs on a regular basis. Educational interventions should be created, and tools designed to help calculate maximum safe LA doses developed. The actual frequency of unsafe LA doses administration would also deserve further study.</p

    Impact of a Mobile App (LoAD Calc) on the Calculation of Maximum Safe Doses of Local Anesthetics : Protocol for a Randomized Controlled Trial

    No full text
    Background Local anesthetics (LAs) are regularly used to alleviate pain during medical or surgical procedures. Their use is generally considered safe, but exceeding the maximum recommended doses can lead to LA systemic toxicity, a rare but potentially lethal complication. Determining maximum safe doses is therefore mandatory before performing local anesthesia, but rules are often unclear and the factors affecting dose calculation are numerous. Mobile health apps have been shown to help clinical decision-making, but most currently available apps present significant limitations. The Local Anesthetics Dose Calculator (LoAD Calc) app was designed to overcome these limitations by taking all relevant parameters into account. Before deploying this app in a clinical setting, it should be tested to determine its effectiveness and whether clinicians would be willing to use it. Objective The primary objective will be to evaluate the effectiveness of the LoAD Calc app through written simulated cases. The secondary objective will be to determine whether physicians find this app easier, faster, and safer than the methods they generally use. Methods We describe a parallel-group randomized controlled trial protocol. Anesthesiologists working at the Geneva University Hospitals will be invited to participate. Participants will be asked to compute the maximum dose of LA in 10 simulated clinical cases using 3 different LAs. The maximum safe dose will be determined manually using the same calculation rules that were used to develop LoAD Calc, without using the app itself. An overdose will be considered any dose higher than the correct dose, rounded to the superior integer, while an underdose will be defined as the optimal calculated dose minus 20%, rounded to the inferior integer. Randomization will be stratified according to current position (resident vs registrar). The participants allocated to the LoAD Calc (experimental) group will use the LoAD Calc app to compute the maximum safe LA doses. Those allocated to the control group will be asked to use the method they generally use. The primary outcome will be the overall overdose rate. Secondary outcomes will include the overdose rate according to ideal and actual body weight and to each specific LA, the overall underdose rate, and the time taken to complete these calculations. The app’s usability will also be assessed. Results A sample size of 46 participants will be needed to detect a difference of 10% with a power of 90%. Thus, a target of 50 participants was set to allow for attrition and exclusion criteria. We expect recruitment to begin during the winter of 2023, data analysis in the spring of 2024, and results by the end of 2024. Conclusions This study should determine whether LoAD Calc, a mobile health app designed to compute maximum safe LA doses, is safer and more efficient than traditional LA calculation methods. International Registered Report Identifier (IRRID) PRR1-10.2196/53679</p

    Development and Preliminary Validation of LoAD Calc, a Mobile App for Calculating the Maximum Safe Single Dose of Local Anesthetics

    No full text
    Local anesthetics systemic toxicity can lead to life-threatening situations. Correct calculation of the maximum safe dose is therefore paramount in preventing such complications. Different solutions have already emerged to support anesthesiologists but are seldom used in clinical practice as they require either access to a computer or specific documents to be at hand. A mobile app could provide an easy and practical solution; however, the few apps already created for this purpose often lack key elements, allowing invalid data to be entered and suggesting doses that might exceed the maximum safe dose. We describe the development of LoAD Calc, a mobile health (mHealth) app developed using a modified version of the Information Systems Research framework, which adds design thinking modes to the original framework. The app was enhanced through multiple iterations and developed with the aid of contextual observations and interviews, brainswarming sessions, prototyping, and continuous feedback. The design process led to the creation of two prototypes which underwent thorough testing by a sample of eight anesthesiologists. The final version of the app, LoAD Calc, was deployed on Apple and Android mobile test platforms and tested again by the same sample until deemed fit for release

    The central and biodynamic role of gut microbiota in critically ill patients

    No full text
    Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in “health-promoting” commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut–organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut–organ axis

    Hypophosphatemia on ICU Admission Is Associated with an Increased Length of Stay in the ICU and Time under Mechanical Ventilation

    No full text
    Hypophosphatemia is frequently observed in the ICU and is associated with several impairments such as respiratory failure or infections. We hypothesized that hypophosphatemia on ICU admission is associated with a prolonged duration of mechanical ventilation and ICU length of stay (LOS), particularly in COVID-19 patients. This cross-sectional study analyzed data from 1226 patients hospitalized in the ICU of the Geneva University Hospitals from August 2020 to April 2021. Patients were categorized as having hypophosphatemia (phosphatemia ≤ 0.8 mmol/L) or non-hypophosphatemia (phosphatemia &gt; 0.8 mmol/L) on ICU admission. Linear regressions were performed to investigate the association between hypophosphatemia on ICU admission and ICU LOS and duration of mechanical ventilation. Overall, 250 (20%) patients presented hypophosphatemia on ICU admission. In the univariable analysis, hypophosphatemic patients had longer ICU LOS than non-hypophosphatemic patients, 7.4 days (±10.4) versus 5.6 days (±8.3), (p &lt; 0.01). Hypophosphatemia on ICU admission was associated with a prolonged duration of mechanical ventilation, 7.4 days (±11.2) versus 5.6 days (±8.9), (p &lt; 0.01). These associations were confirmed in the multivariable analysis (p &lt; 0.01). In the subgroup of COVID-19 patients, a significant association between hypophosphatemia and ICU LOS and duration of mechanical ventilation was also observed. In conclusion, hypophosphatemia on ICU admission is associated with a longer ICU LOS and time under mechanical ventilation, both in the general ICU population and in COVID-19 patients.</p
    corecore