3,143 research outputs found

    Bedrest in healthy women: Effects of menstrual function and oral contraceptives

    Get PDF
    With the development of the space shuttle program, space flight for the first time is available to individuals who have not been specially selected and trained to be astronauts. In addition, women are being actively recruited into the space program, both as mission specialists and as career astronauts. One purpose of this project was to examine some of the physiological responses of women to a simulated weightlessness program (12 day horizontal bedrest), to compare their responses to those reported in men during similar programs, and to test whether menstrual function might alter some of the physiological changes which occur during bedrest, specifically changes in the plasma volume, exercise tolerance, and venous compliance before and after bedrest

    New Isozyme Systems for Maize (Zea mays L.): Aconitate Hydratase, Adenylate Kinase, NADH Dehydrogenase, and Shikimate Dehydrogenase

    Get PDF
    Electrophoretic variation and inheritance of four novel enzyme systems were studied in maize (Zea mays L.). A minimum of 10 genetic loci collectively encodes isozymes of aconitate hydratase (ACO; EC 4.2.1.3.), adenylate kinase (ADK; EC 2.7.4.3), NADH dehydrogenase (DIA; EC 1.6.99.-), and shikimate dehydrogenase (SAD; EC 1.1.1.25). At least four loci are responsible for the genetic control of ACO. Genetic data for two of the encoding loci, Aco1 and Aco4, demonstrated that at least two maize ACOs are active as monomers. Analysis of organellar preparations suggests that ACO1 and ACO4 are localized in the cytosolic and mitochondrial subcellular fractions, respectively. Maize ADK is encoded by a single nuclear locus, Adk1, governing monomeric enzymes that are located in the chloroplasts. Two cytosolic and two mitochondrial forms of DIA were electrophoretically resolved. Segregation analyses demonstrated that the two cytosolic isozymes are controlled by separate loci, Dia1 and Dia2, coding for products that are functional as monomers (DIA1) and dimers (DIA2). The major isozyme of SAD is apparently cytosolic, although an additional faintly staining plastid form may be present. Alleles at Sad1 are each associated with two bands that cosegregate in controlled crosses. Linkage analyses and crosses with B-A translocation stocks were effective in determining the map locations of six loci, including the previously described but unmapped locus Acp4. Several of these loci were localized to sparsely mapped regions of the genome. Dia2 and Acp4 were placed on the distal portion of the long arm of chromosome 1, 12.6 map units apart. Dia1 was localized to chromosome 2, 22.2 centimorgans (cM) from B1. Aco1 was mapped to chromosome 4, 6.2 cM from su1. Adk1 was placed on the poorly marked short arm of chromosome 6, 8.1 map units from rgd1. Less than 1% recombination was observed between Glu1 (on chromosome 10) and Sad1. In contrast to many other maize isozyme systems, there was little evidence of gene duplication or of parallel linkage relationships for these allozyme loci

    Fe-Mg Partitioning between Olivine and High-magnesian Melts and the Nature of Hawaiian Parental Liquids

    Get PDF
    We conducted 1 atm experiments on a synthetic Hawaiian picrite at fO_2 values ranging from the quartz–fayalite–magnetite (QFM) buffer to air and temperatures ranging from 1302 to 1600°C. Along the QFM buffer, olivine is the liquidus phase at ~1540°C and small amounts of spinel (< 0·2 wt %) are present in experiments conducted at and below 1350°C. The olivine becomes progressively more ferrous with decreasing temperature [Fo_(92·3) to Fo_(87·3), where Fo = 100 × Mg/(Mg + Fe), atomic]; compositions of coexisting liquids reflect the mode and composition of the olivine with concentrations of SiO_2, TiO_2, Al_(2)O_3, and CaO increasing monotonically with decreasing temperature, those of NiO and MgO decreasing, and FeO^* (all Fe as FeO) remaining roughly constant. An empirical relationship based on our data, T(°C) = 19·2 × (MgO in liquid, wt %) + 1048, provides a semi-quantitative geothermometer applicable to a range of Hawaiian magma compositions. The olivine–liquid exchange coefficient, K_(D,Fe^(2+)-Mg) = (FeO/MgO)^(ol)/(FeO/MgO)^(liq), is 0·345 ± 0·009 (1σ ) for our 11 experiments. A literature database of 446 1 atm experiments conducted within 0·25 log units of the QFM buffer (QFM ± 0·25) yields a median K_(D,Fe^(2+)-Mg) of 0·34; K_(D,Fe^(2+)-Mg) values from single experiments range from 0·41 to 0·13 and are correlated with SiO_2 and alkalis in the liquid, as well as the forsterite (Fo) content of the olivine. For 78 experiments with broadly tholeiitic liquid compositions (46–52 wt % SiO_2 and ≤ 3 wt % Na_(2)O + K_(2)O) coexisting with Fo_(92–80) olivines, and run near QFM (QFM ± 0·25), K_(D,Fe^(2+)-Mg) is approximately independent of composition with a median value of 0·340 ± 0·012 (error is the mean absolute deviation of the 78 olivine–glass pairs from the database that meet these compositional criteria), a value close to the mean value of 0·343 ± 0·008 from our QFM experiments. Thus, over the composition range encompassed by Hawaiian tholeiitic lavas and their parental melts, K_(D,Fe^(2+)-Mg) ~ 0·34 and, given the redox conditions and a Fo content for the most magnesian olivine phenocrysts, a parental melt composition can be reconstructed. The calculated compositions of the parental melts are sensitive to the input parameters, decreasing by ~1 wt % MgO for every log unit increase in the selected fO_2, every 0·5 decrease in the Fo-number of the target olivine, and every 0·015 decrease in K_(D,Fe^(2+)-Mg). For plausible ranges in redox conditions and Fo-number of the most MgO-rich olivine phenocrysts, the parental liquids for Hawaiian tholeiites are highly magnesian, in the range of 19–21 wt % MgO for Kilauea, Mauna Loa and Mauna Kea

    The Temperature and Pressure Dependence of Nickel Partitioning between Olivine and Silicate Melt

    Get PDF
    We measured Ni partitioning between olivine and melt, D^(ol/liq)_(Ni), in experiments on mid-ocean ridge basalt (MORB) encapsulated in olivine at pressures from 1 atm to 3·0 GPa and temperatures from 1400 to 1550°C. We present a series of experiments where the temperature (T) at each pressure (P) was selected so that the liquid composition remained approximately constant over the entire P–T range. This approach allowed us to investigate the effects of T and P on D^(ol/liq)_(Ni), independent of substantial changes in liquid composition. Our experiments show that for a liquid with ∼18 wt% MgO, D^(ol/liq)_(Ni) decreases from 5·0 to 3·8 as the temperature increases from 1400 to 1550°C. Fitting our experimental results and literature data to thermodynamic expressions for D^(ol/liq)_(Ni) as a function of both temperature and liquid composition shows that the small variations in liquid composition in our experiments account for little of the observed variation of D^(ol/liq)_(Ni). Because the changes in volume and heat capacity of the exchange reaction MgSi_(0-5)O^(ol)_2 + D^(ol/liq)_(Ni) ↔ NiSi_(0-5)O^(ol)_2 + MgO^(liq) are small, D^(molar)_(Ni), the Ni partition coefficient on a molar basis, is well described by In(D^(molar)_(Ni))=-^(Δ_rHo_(T_(ref)),P_(ref)/_(RT) + ^Δ_rSo_(T_(ref),P_(ref))/_R - In (X^(liq)_(MgO)/X^(ol)_(MgSi)_(0-5)O_2) with Δ_rH^o_T_(ref),_P_(ref)/_R = 4375 K and Δ_rSo_T_(ref),_P_(ref)/_R = –2·023 for our data (Δ_rH^o_T_(ref),_P_(ref)/_R = 4338 K and Δ_rSo_T_(ref),_P_(ref)/_R = –1·956 for our experiments combined with a compilation of literature data). This expression is easy to use and applicable to a wide range of pressures, temperatures, and phase compositions. Based on our results and data from the literature, the temperature dependence of D^(ol/liq)_(Ni) leads to the prediction that when a deep partial melt from a peridotitic mantle source is brought to low pressure and cooled, the first Mg-rich olivines to crystallize can have significantly higher NiO contents than those in the residual source from which the melt was extracted. This enrichment in Ni is driven by the difference between the temperature of low-pressure crystallization and the temperature of melt extraction from the residue. The average observed enrichment of Ni in forsteritic olivine phenocrysts from Hawaii—relative to the typical olivines from mantle peridotites—is consistent with a simple scenario of high-temperature partial melting of an olivine-bearing source at the base of the lithosphere followed by low-temperature crystallization of olivine. The most extreme enrichments of Ni in Hawaiian olivine phenocrysts and the lower Ni contents of some olivines can also be explained by the known variability of Ni contents of olivines from mantle peridotites via the same simple scenario. Although we cannot rule out alternative hypotheses for producing the high-Ni olivines observed in Hawaii and elsewhere, these processes or materials are unnecessary to account for NiO enrichments in olivine. The absolute temperature, in addition to the difference between the temperature of melt segregation from the residue and the temperature of low-pressure crystallization, is a significant factor in determining the degree of Ni enrichment in olivine phenocrysts relative to the olivines in the mantle source. The moderate Ni enrichment observed in most komatiitic olivines compared with those of Hawaii may result from the higher absolute temperatures required to generate MgO-rich komatiitic melts. Observed NiO enrichments in early crystallizing komatiitic olivine are consistent with their high temperatures of crystallization and with a deep origin for the komatiite parental melts
    • …
    corecore