38,659 research outputs found

    Resolving the bow-shock nebula around the old pulsar PSR B1929+10 with multi-epoch Chandra observations

    Full text link
    We have studied the nearby old pulsar PSR B1929+10 and its surrounding interstellar medium utilizing the sub-arcsecond angular resolution of the Chandra X-ray Observatory. The Chandra data are found to be fully consistent with the results obtained from deep XMM-Newton observations as far as the pulsar is concerned. We confirm the non-thermal emission nature of the pulsar's X-radiation. In addition to the X-ray trail already seen in previous observations by the ROSAT and XMM-Newton X-ray observatories, we discovered an arc-like nebula surrounding the pulsar. We interpret the feature as a bow-shock nebula and discuss its energetics in the context of standard shock theory.Comment: Accepted by A&A, revised in accordance with referee's comment

    Discovery of an X-ray Nebula associated with PSR J2124-3358

    Get PDF
    We report the discovery of an X-ray nebula associated with the nearby millisecond pulsar PSR J2124-3358. This is the first time that extended emission from a solitary millisecond pulsar is detected. The emission extends from the pulsar to the northwest by ~ 0.5 arcmin. The spectrum of the nebular emission can be modeled by a power law spectrum with photon index of 2.2 +/-0.4. This is inline with the emission being originated from accelerated particles in the post shock flow.Comment: roceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.13-1

    Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation

    Full text link
    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional figure inserted for clarit

    Analytical ground state for the three-band Hubbard model

    Full text link
    For the calculation of charge excitations as those observed in, e.g., photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct description of ground-state charge properties is essential. In strongly correlated systems like the undoped cuprates this is a highly non-trivial problem. In this paper we derive a non-perturbative analytical approximation for the ground state of the three-band Hubbard model on an infinite, half filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo calculations it is shown that the resulting expressions correctly describe the charge properties of the ground state. Relations to other approaches are discussed. The analytical ground state preserves size consistency and can be generalized for other geometries, while still being both easy to interpret and to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.

    Cumulant approach to weakly doped antiferromagnets

    Full text link
    We present a new approach to static and dynamical properties of holes and spins in weakly doped antiferromagnets in two dimensions. The calculations are based on a recently introduced cumulant approach to ground--state properties of correlated electronic systems. The present method allows to evaluate hole and spin--wave dispersion relations by considering hole or spin excitations of the ground state. Usually, these dispersions are found from time--dependent correlation functions. To demonstrate the ability of the approach we first derive the dispersion relation for the lowest single hole excitation at half--filling. However, the main purpose of this paper is to focus on the mutual influence of mobile holes and spin waves in the weakly doped system. It is shown that low-energy spin excitations strongly admix to the ground--state. The coupling of spin waves and holes leads to a strong suppression of the staggered magnetization which can not be explained by a simple rigid--band picture for the hole quasiparticles. Also the experimentally observed doping dependence of the spin--wave excitation energies can be understood within our formalism.Comment: REVTEX, 25 pages, 7 figures (EPS), to be published in Phys. Rev.

    The reaction 13C(alpha,n)16O: a background for the observation of geo-neutrinos

    Full text link
    The absolute cross section of the 13^{13}C(α\alpha,n)16^{16}O reaction has been measured at Eα_{\alpha} = 0.8 to 8.0 MeV with an overall accuracy of 4%. The precision is needed to subtract reliably a background in the observation of geo-neutrinos, e.g. in the KamLAND detector.Comment: LaTex file, 13 pages including 3 ps figures. Any request to [email protected]. Phys. Rev . C, to appea

    Search for L5 Earth Trojans with DECam

    Get PDF
    Most of the major planets in the Solar system support populations of co-orbiting bodies, known as Trojans, at their L4 and L5 Lagrange points. In contrast, Earth has only one known co-orbiting companion. This paper presents the results from a search for Earth Trojans (ETs) using the DECam instrument on the Blanco Telescope at CTIO. This search found no additional Trojans in spite of greater coverage compared to previous surveys of the L5 point. Therefore, the main result of this work is to place the most stringent constraints to date on the population of ETs. These constraints depend on assumptions regarding the underlying population properties, especially the slope of the magnitude distribution (which in turn depends on the size and albedo distributions of the objects). For standard assumptions, we calculate upper limits to a 90 per cent confidence limit on the L5 population of N_(ET) < 1 for magnitude H < 15.5, N_(ET) = 60–85 for H < 19.7, and N_(ET) = 97 for H = 20.4. This latter magnitude limit corresponds to Trojans ∼300 m in size for albedo 0.15. At H = 19.7, these upper limits are consistent with previous L4 ET constraints and significantly improve L5 constraints
    • …
    corecore