41,117 research outputs found
Pointless Hyperelliptic Curves
In this paper we consider the question of whether there exists a hyperelliptic curve of genus g which is defined over but has no rational points over for various pairs . As an example of such a result, we show that if p is a prime such that is also prime then there will be pointless hyperelliptic curves over of every genus
Cyclic Critical Groups of Graphs
In this note, we describe a construction that leads to families of graphs whose critical groups are cyclic. For some of these families we are able to give a formula for the number of spanning trees of the graph, which then determines the group exactly
Pathways to double ionization of atoms in strong fields
We discuss the final stages of double ionization of atoms in a strong
linearly polarized laser field within a classical model. We propose that all
trajectories leading to non-sequential double ionization pass close to a saddle
in phase space which we identify and characterize. The saddle lies in a two
degree of freedom subspace of symmetrically escaping electrons. The
distribution of longitudinal momenta of ions as calculated within the subspace
shows the double hump structure observed in experiments. Including a symmetric
bending mode of the electrons allows us to reproduce the transverse ion
momenta. We discuss also a path to sequential ionization and show that it does
not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version
accepted for publication in Phys. Rev.
On Retardation Effects in Space Charge Calculations Of High Current Electron Beams
Laser-plasma accelerators are expected to deliver electron bunches with high
space charge fields. Several recent publications have addressed the impact of
space charge effects on such bunches after the extraction into vacuum.
Artifacts due to the approximation of retardation effects are addressed, which
are typically either neglected or approximated. We discuss a much more
appropriate calculation for the case of laser wakefield acceleration with
negligible retardation artifacts due to the calculation performed in the mean
rest frame. This presented calculation approach also aims at a validation of
other simulation approaches
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Shear viscosity of a highly excited string and the black hole membrane paradigm
Black hole membrane paradigm states that a certain viscous membrane seems to
be sitting on a stretched horizon of a black hole from the viewpoint of a
distant observer. We show that the shear viscosity of the fictitious membrane
can be reproduced by a highly excited string covering the stretched horizon
except for a numerical coefficient.Comment: 22 pages, no figure, minor correction
Quantum bit detector
We propose and analyze an experimental scheme of quantum nondemolition
detection of monophotonic and vacuum states in a superconductive toroidal
cavity by means of Rydberg atoms.Comment: 4 pages, 3 figure
Non-dipole recollision-gated double ionization and observable effects
Using a three-dimensional semiclassical model, we study double ionization for
strongly-driven He fully accounting for magnetic field effects. For linearly
and slightly elliptically polarized laser fields, we show that recollisions and
the magnetic field combined act as a gate. This gate favors more transverse -
with respect to the electric field - initial momenta of the tunneling electron
that are opposite to the propagation direction of the laser field. In the
absence of non-dipole effects, the transverse initial momentum is symmetric
with respect to zero. We find that this asymmetry in the transverse initial
momentum gives rise to an asymmetry in a double ionization observable. Finally,
we show that this asymmetry in the transverse initial momentum of the tunneling
electron accounts for a recently-reported unexpectedly large average sum of the
electron momenta parallel to the propagation direction of the laser field.Comment: Amended the focus of the paper and discussion. 9 pages, 7 figure
Non-thermalization in trapped atomic ion spin chains
Linear arrays of trapped and laser cooled atomic ions are a versatile
platform for studying emergent phenomena in strongly-interacting many-body
systems. Effective spins are encoded in long-lived electronic levels of each
ion and made to interact through laser mediated optical dipole forces. The
advantages of experiments with cold trapped ions, including high spatiotemporal
resolution, decoupling from the external environment, and control over the
system Hamiltonian, are used to measure quantum effects not always accessible
in natural condensed matter samples. In this review we highlight recent work
using trapped ions to explore a variety of non-ergodic phenomena in long-range
interacting spin-models which are heralded by memory of out-of-equilibrium
initial conditions. We observe long-lived memory in static magnetizations for
quenched many-body localization and prethermalization, while memory is
preserved in the periodic oscillations of a driven discrete time crystal state.Comment: 14 pages, 5 figures, submitted for edition of Phil. Trans. R. Soc. A
on "Breakdown of ergodicity in quantum systems
- …