39,913 research outputs found

    Neutrinos from active black holes, sources of ultra high energy cosmic rays

    Full text link
    A correlation between the highest energy Cosmic Rays (above ~ EeV) and the distribution of active galactic nuclei (AGN) gives rise to a prediction of neutrino production in the same sources. In this paper, we present a detailed AGN model, predicting neutrino production near the foot of the jet, where the photon fields from the disk and synchrotron radiation from the jet itself create high optical depths for proton-photon interactions. The protons escape from later shocks where the emission region is optically thin for proton-photon interactions. Consequently, Cosmic Rays are predicted to come from FR-I galaxies, independent of the orientation of the source. Neutrinos, on the other hand, are only observable from sources directing their jet towards Earth, i.e. flat spectrum radio sources and in particular BL Lac type objects, due to the strongly boosted neutrino emission.Comment: Accepted for publication in Astroparticle Physics; 30 pages, 8 figure

    The diffuse neutrino flux from FR-II radio galaxies and blazars: A source property based estimate

    Full text link
    Water and ice Cherenkov telescopes of the present and future aim for the detection of a neutrino signal from extraterrestrial sources at energies E>PeV. Some of the most promising extragalactic sources are Active Galactic Nuclei (AGN). In this paper, the neutrino flux from two kinds of AGN sources will be estimated assuming photohadronic interactions in the jet of the AGN. The first analyzed sample contains FR-II radio galaxies while the second AGN type examined are blazars. The result is highly dependent on the proton's index of the energy spectrum. To normalize the spectrum, the connection between neutrino and disk luminosity will be used by applying the jet-disk symbiosis model from Falcke and Biermann (1995). The maximum proton energy and thus, also the maximum neutrino energy of the source is connected to its disk luminosity, which was shown by Lovelace (1976) and was confirmed by Falcke et al. (1995).Comment: 24 pages, 14 figures, to be published in Astroparticle Physic

    Neutrinos from photo-hadronic interactions in Pks2155-304

    Full text link
    The high-peaked BL Lac object Pks2155-304 shows high variability at multiwavelengths, i.e. from optical up to TeV energies. A giant flare of around 1 hour at X-ray and TeV energies was observed in 2006. In this context, it is essential to understand the physical processes in terms of the primary spectrum and the radiation emitted, since high-energy emission can arise in both leptonic and hadronic processes. In this contribution, we investigate the possibility of neutrino production in photo-hadronic interactions. In particular, we predict a direct correlation between optical and TeV energies at sufficiently high optical radiation fields. We show that in the blazar Pks2155-304, the optical emission in the low-state is sufficient to lead to photo-hadronic interactions and therefore to the production of high-energy photons.Comment: contribution to RICAP 2009 and ICRC 2009 - both papers are combined in one draft. 11 pages, 3 figure

    String vacua with flux from freely-acting obifolds

    Full text link
    A precise correspondence between freely-acting orbifolds (Scherk-Schwarz compactifications) and string vacua with NSNS flux turned on is established using T-duality. We focus our attention to a certain non-compact Z_2 heterotic freely-acting orbifold with N=2 supersymmetry (SUSY). The geometric properties of the T-dual background are studied. As expected, the space is non-Kahler with the most generic torsion compatible with SUSY. All equations of motion are satisfied, except the Bianchi identity for the NSNS field, that is satisfied only at leading order in derivatives, i.e. without the curvature term. We point out that this is due to unknown corrections to the standard heterotic T-duality rules.Comment: 13 pages, no figures; v2: references added and rearranged, version to appear in JHE

    Integral field spectroscopy of QSO host galaxies

    Full text link
    We describe a project to study the state of the ISM in ~20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe method developement to access the stellar and gas component of the spectrum without the strong nuclear emission to access the host galaxy properties also in the central region. It shows that integral field spectroscopy promises to be very efficient to study the gas distribution and its velocity field, and also spatially resolved stellar population in the host galaxies also of luminous AGN.Comment: 4 pages, 6 figures, Euro3D Science Workshop, Cambridge, May 2003, AN, accepte

    Ultracold quantum gases in triangular optical lattices

    Full text link
    Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of those ideas demand for experimental environments with non-cubic lattice geometries. In this paper we report on the implementation of a versatile three-beam lattice allowing for the generation of triangular as well as hexagonal optical lattices. As an important step the superfluid-Mott insulator (SF-MI) quantum phase transition has been observed and investigated in detail in this lattice geometry for the first time. In addition to this we study the physics of spinor Bose-Einstein condensates (BEC) in the presence of the triangular optical lattice potential, especially spin changing dynamics across the SF-MI transition. Our results suggest that below the SF-MI phase transition, a well-established mean-field model describes the observed data when renormalizing the spin-dependent interaction. Interestingly this opens new perspectives for a lattice driven tuning of a spin dynamics resonance occurring through the interplay of quadratic Zeeman effect and spin-dependent interaction. We finally discuss further lattice configurations which can be realized with our setup.Comment: 19 pages, 7 figure

    Relativistic linear stability equations for the nonlinear Dirac equation in Bose-Einstein condensates

    Full text link
    We present relativistic linear stability equations (RLSE) for quasi-relativistic cold atoms in a honeycomb optical lattice. These equations are derived from first principles and provide a method for computing stabilities of arbitrary localized solutions of the nonlinear Dirac equation (NLDE), a relativistic generalization of the nonlinear Schr\"odinger equation. We present a variety of such localized solutions: skyrmions, solitons, vortices, and half-quantum vortices, and study their stabilities via the RLSE. When applied to a uniform background, our calculations reveal an experimentally observable effect in the form of Cherenkov radiation. Remarkably, the Berry phase from the bipartite structure of the honeycomb lattice induces a boson-fermion transmutation in the quasi-particle operator statistics.Comment: 6 pages, 3 figure

    Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation

    Full text link
    We calculate angle-resolved above-threshold ionization spectra for diatomic molecules in linearly polarized laser fields, employing the strong-field approximation. The interference structure resulting from the individual contributions of the different scattering scenarios is discussed in detail, with respect to the dependence on the internuclear distance and molecular orientation. We show that, in general, the contributions from the processes in which the electron is freed at one center and rescatters off the other obscure the interference maxima and minima obtained from single-center processes. However, around the boundary of the energy regions for which rescattering has a classical counterpart, such processes play a negligible role and very clear interference patterns are observed. In such energy regions, one is able to infer the internuclear distance from the energy difference between adjacent interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional figure inserted for clarit

    Linear Sigma Models with Torsion

    Full text link
    Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of couplings than models with (2,2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kahler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.Comment: 40 pages, LaTeX, 1 figure; references added; a new section on supersymmetry added; quantization condition revisite

    Status of neutrino astronomy

    Full text link
    Astrophysical neutrinos can be produced in proton interactions of charged cosmic rays with ambient photon or baryonic fields. Cosmic rays are observed in balloon, satellite and air shower experiments every day, from below 1e9 eV up to macroscopic energies of 1e21 eV. The observation of different photon fields has been done ever since, today with detections ranging from radio wavelengths up to very high-energy photons in the TeV range. The leading question for neutrino astronomers is now which sources provide a combination of efficient proton acceleration with sufficiently high photon fields or baryonic targets at the same time in order to produce a neutrino flux that is high enough to exceed the background of atmospheric neutrinos. There are only two confirmed astrophysical neutrino sources up to today: the sun and SuperNova 1987A emit and emitted neutrinos at MeV energies. The aim of large underground Cherenkov telescopes like IceCube and KM3NeT is the detection of neutrinos at energies above 100 GeV. In this paper, recent developments of neutrino flux modeling for the most promising extragalactic sources, gamma ray bursts and active galactic nuclei, are presented.Comment: Talk given at Neutrino 2008, Christchurch (New Zealand) 6 pages, 4 figures, 1 tabl
    corecore