18,578 research outputs found
Comparison of the INRIM and PTB lattice-spacing standards
To base the kilogram definition on the atomic mass of the silicon 28 atom,
the present relative uncertainty of the silicon 28 lattice parameter must
lowered to 3E-9. To achieve this goal, a new experimental apparatus capable of
a centimetre measurement-baseline has been made at the INRIM. The comparison
between the determinations of the lattice parameter of crystals MO*4 of INRIM
and WASO4.2a of PTB is intended to verify the measurement capabilities and to
assess the limits of this experiment.Comment: 10 pages, 8 figures, submitted to Metrologi
Strong interference effects in the resonant Auger decay of atoms induced by intense X-Ray fields
The theory of resonant Auger decay of atoms in a high intensity coherent
X-ray pulse is presented. The theory includes the coupling between the ground
state and the resonance due to an intense X-ray pulse, taking into account the
decay of the resonance and the direct photoionization of the ground state, both
populating the final ionic states coherently. The theory also considers the
impact of the direct photoionization of the resonance state itself which
typically populates highly-excited ionic states. The combined action of the
resonant decay and of the direct ionization of the ground state in the field
induces a non-hermitian time-dependent coupling between the ground and the
'dressed' resonance stats. The impact of these competing processes on the total
electron yield and on the 2s2p3p P spectator and
2s2p S participator Auger decay spectra of the Ne 1s3p
resonance is investigated. The role of the direct photoionization of the ground
state and of the resonance increases dramatically with the field intensity.
This results in strong interference effects with distinct patterns in the
electron spectra, different for the participator and spectator final states.Comment: 31 pages, 6 figure
FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions
In the root endophyte Serendipita indica, several lectin-like members of the expanded multigene family of WSC proteins are transcriptionally induced in planta and are potentially involved in beta-glucan remodeling at the fungal cell wall. Using biochemical and cytological approaches we show that one of these lectins, SiWSC3 with three WSC domains, is an integral fungal cell wall component that binds to long-chain beta 1-3-glucan but has no affinity for shorter beta 1-3- or beta 1-6-linked glucose oligomers. Comparative analysis with the previously identified beta-glucan-binding lectin SiFGB1 demonstrated that whereas SiWSC3 does not require beta 1-6-linked glucose for efficient binding to branched beta 1-3-glucan, SiFGB1 does. In contrast to SiFGB1, the multivalent SiWSC3 lectin can efficiently agglutinate fungal cells and is additionally induced during fungus-fungus confrontation, suggesting different functions for these two beta-glucan-binding lectins. Our results highlight the importance of the beta-glucan cell wall component in plant-fungus interactions and the potential of beta-glucan-binding lectins as specific detection tools for fungi in vivo
Are "EIT Waves" Fast-Mode MHD Waves?
We examine the nature of large-scale, coronal, propagating wave fronts (``EIT
waves'') and find they are incongruous with solutions using fast-mode MHD
plane-wave theory. Specifically, we consider the following properties:
non-dispersive single pulse manifestions, observed velocities below the local
Alfven speed, and different pulses which travel at any number of constant
velocities, rather than at the ``predicted'' fast-mode speed. We discuss the
possibility of a soliton-like explanation for these phenomena, and show how it
is consistent with the above-mentioned aspects.Comment: to be published in the Astrophysical Journa
Angular anisotropy in the resonant Auger decay of 2p-photoexcited Mg
We have measured strongly negative β values of the 3s-participator lines at the magnesium 2p→4s and 2p1/2→3d excitations. Observed β values of the spectator lines following 2p→4s excitation are not reproduced by the strict spectator model. Our multiconfiguration Dirac-Fock calculations show that the resonant Auger spectra are influenced by unusually pronounced configuration interaction in the excited state. This influence is strongly enhanced by a change of sign in the Auger amplitude of the leading term near the transition energy, a dynamic effect similar to a Cooper minimum in photoionization
XMM-Newton Observations of Radio Pulsars B0834+06 and B0826-34 and Implications for Pulsar Inner Accelerator
We report the X-ray observations of two radio pulsars with drifting
subpulses: B0834 + 06 and B0826 - 34 using \xmm\. PSR B0834 + 06 was detected
with a total of 70 counts from the three EPIC instruments over 50 ks exposure
time. Its spectrum was best described as that of a blackbody (BB) with
temperature K and bolometric luminosity
of erg s. As it is typical in
pulsars with BB thermal components in their X-ray spectra, the hot spot surface
area is much smaller than that of the canonical polar cap, implying a
non-dipolar surface magnetic field much stronger than the dipolar component
derived from the pulsar spin-down (in this case about 50 times smaller and
stronger, respectively). The second pulsar PSR B0826 - 34 was not detected over
50 ks exposure time, giving an upper limit for the bolometric luminosity erg s. We use these data as well as the radio
emission data concerned with drifting subpulses to test the Partially Screened
Gap (PSG) model of the inner accelerator in pulsars.Comment: Accepted for publication by The Astrophysical Journa
Resonant Auger decay of the core-excited CO molecule in intense X-ray laser fields
The dynamics of the resonant Auger (RA) process of the core-excited
CO(1s) molecule in an intense X-ray laser field is
studied theoretically. The theoretical approach includes the analogue of the
conical intersections of the complex potential energy surfaces of the ground
and `dressed' resonant states due to intense X-ray pulses, taking into account
the decay of the resonance and the direct photoionization of the ground state,
both populating the same final ionic states coherently, as well as the direct
photoionization of the resonance state itself. The light-induced non-adiabatic
effect of the analogue of the conical intersections of the resulting complex
potential energy surfaces gives rise to strong coupling between the electronic,
vibrational and rotational degrees of freedom of the diatomic CO molecule. The
interplay of the direct photoionization of the ground state and of the decay of
the resonance increases dramatically with the field intensity. The coherent
population of a final ionic state via both the direct photoionization and the
resonant Auger decay channels induces strong interference effects with distinct
patterns in the RA electron spectra. The individual impact of these physical
processes on the total electron yield and on the CO electron
spectrum are demonstrated.Comment: 13 figs, 1 tabe
Observation of Non-isotropic Auger Angular Distribution in the C(1s) Shape Resonance of CO
Angle-resolved high-resolution C(KVV) Auger spectra of CO were taken in the vicinity of the C(1s) σ* shape resonance. These spectra show clear evidence for the theoretically predicted anisotropic K-shell Auger emission in molecules. Complementary results from angle-resolved photoion spectroscopy show that the small size of the observed effect is, besides the varying intrinsic anisotropy of the Auger decay, also due to a smaller anisotropy in the primary absorption process than originally predicted but in good agreement with more recent calculations. Contrary to this, satellite Auger transitions show unexpectedly large anisotropies
- …