134 research outputs found

    Stationary components of HeI in strong magnetic fields - a tool to identify magnetic DB white dwarfs

    Get PDF
    In only three of the 61 known magnetic white dwarfs helium has been identified unambiguously while about 20% of all non-magnetic stars of this class are known to contain HeI or HeII. Until recently, data for HeI data were available only for magnetic fields below 20MG. This changed with the publication of extensive data by the group in Heidelberg. The corresponding calculations have now been completed for the energetically lowest five states of singlet and triplet symmetry for the subspaces with |m| <= 3; selected calculations have been performed for even higher excitations. In strongly magnetized white dwarfs only line components are visible whose wavelengths vary slowly with respect to the magnetic field, particularly stationary components which have a wavelength minimum or maximum in the range of the magnetic fields strengths on the stellar surface. In view of the many ongoing surveys finding white dwarfs we want to provide the astronomical community with a tool to identify helium in white dwarfs for fields up to 5.3GG. To this end we present all calculated helium line components whose wavelengths in the UV, optical, and near IR vary slowly enough with respect to the field strength to produce visible absorption features. We also list all stationary line components in this spectral range. Finally, we find series of minima and maxima which occur as a result of series of extremal transitions to increasingly higher excitations. We estimated the limits for 8 series which can possibly give rise to additional absorption in white dwarf spectra; one strong absorption feature in GD229 which is yet unexplained by stationary components is very close to two estimated series limits.Comment: 8 pages, 2 figures, accepted for publication by Astronomy and Astrophysic

    Helium in superstrong magnetic fields

    Get PDF
    We investigate the helium atom embedded in a superstrong magnetic field gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing pseudomomentum are taken into account. The influence and the magnitude of the different finite mass effects are analyzed and discussed. Within our full configuration interaction approach calculations are performed for the magnetic quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive and negative z parities. Up to six excited states for each symmetry are studied. With increasing field strength the number of bound states decreases rapidly and we remain with a comparatively small number of bound states for gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.

    Electromagnetic transitions of the helium atom in superstrong magnetic fields

    Full text link
    We investigate the electromagnetic transition probabilities for the helium atom embedded in a superstrong magnetic field taking into account the finite nuclear mass. We address the regime \gamma=100-10000 a.u. studying several excited states for each symmetry, i.e. for the magnetic quantum numbers 0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry. The oscillator strengths as a function of the magnetic field, and in particular the influence of the finite nuclear mass on the oscillator strengths are shown and analyzed.Comment: 10 pages, 8 figure

    The helium atom in a strong magnetic field

    Get PDF
    We investigate the electronic structure of the helium atom in a magnetic field b etween B=0 and B=100a.u. The atom is treated as a nonrelativistic system with two interactin g electrons and a fixed nucleus. Scaling laws are provided connecting the fixed-nucleus Hamiltonia n to the one for the case of finite nuclear mass. Respecting the symmetries of the electronic Ham iltonian in the presence of a magnetic field, we represent this Hamiltonian as a matrix with res pect to a two-particle basis composed of one-particle states of a Gaussian basis set. The corresponding generalized eigenvalue problem is solved numerically, providing in the present paper results for vanish ing magnetic quantum number M=0 and even or odd z-parity, each for both singlet and triplet spin symmetry. Total electronic energies of the ground state and the first few excitations in each su bspace as well as their one-electron ionization energies are presented as a function of the magnetic fie ld, and their behaviour is discussed. Energy values for electromagnetic transitions within the M=0 sub space are shown, and a complete table of wavelengths at all the detected stationary points with respect to their field dependence is given, thereby providing a basis for a comparison with observed ab sorption spectra of magnetic white dwarfs.Comment: 21 pages, 4 Figures, acc.f.publ.in J.Phys.

    The HeH+HeH^+ molecular ion in a magnetic field

    Get PDF
    A detailed study of the low-lying electronic states {}^1\Si,{}^3\Si,{}^3\Pi,{}^3\De of the HeH+\rm{HeH}^+ molecular ion in parallel to a magnetic field configuration (when \al-particle and proton are situated on the same magnetic line) is carried out for B=04.414×1013B=0-4.414\times 10^{13} G in the Born-Oppenheimer approximation. The variational method is employed using a physically adequate trial function. It is shown that the parallel configuration is stable with respect to small deviations for \Si-states. The quantum numbers of the ground state depend on the magnetic field strength. The ground state evolves from the spin-singlet {}^1\Si state for small magnetic fields B0.5B\lesssim 0.5 a.u. to the spin-triplet {}^3\Si unbound state for intermediate fields and to the spin-triplet strongly bound 3Π^3\Pi state for B15B \gtrsim 15 a.u. When the HeH+\rm{HeH}^+ molecular ion exists, it is stable with respect to a dissociation.Comment: 13 pages, 5 figures, 4 table

    Acceleration of generalized hypergeometric functions through precise remainder asymptotics

    Full text link
    We express the asymptotics of the remainders of the partial sums {s_n} of the generalized hypergeometric function q+1_F_q through an inverse power series z^n n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k} may be recursively computed to any desired order from the hypergeometric parameters and argument. From this we derive a new series acceleration technique that can be applied to any such function, even with complex parameters and at the branch point z=1. For moderate parameters (up to approximately ten) a C implementation at fixed precision is very effective at computing these functions; for larger parameters an implementation in higher than machine precision would be needed. Even for larger parameters, however, our C implementation is able to correctly determine whether or not it has converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added several references, added comparison to other methods, and added discussion of recursion stabilit

    Magnetic Field Stimulated Transitions of Excited States in Fast Muonic Helium Ions

    Get PDF
    It is shown that one can stimulate, by using the present-day laboratory magnetic fields, transitions between the lmlm sub-levels of fast μHe+\mu He^+ ions formating in muon catalyzed fusion. Strong fields also cause the self-ionization from highly excited states of such muonic ions. Both effects are the consequence of the interaction of the bound muon with the oscillating field of the Stark term coupling the center-of-mass and muon motions of the μHe+\mu He^+ ion due to the non-separability of the collective and internal variables in this system. The performed calculations show a possibility to drive the population of the lmlm sub-levels by applying a field of a few TeslaTesla, which affects the reactivation rate and is especially important to the KαK\alpha xx-ray production in muon catalyzed fusion. It is also shown that the 2s2p2s-2p splitting in μHe+\mu He^+ due to the vacuum polarization slightly decreases the stimulated transition rates.Comment: 5 figure

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    The ground state of the carbon atom in strong magnetic fields

    Full text link
    The ground and a few excited states of the carbon atom in external uniform magnetic fields are calculated by means of our 2D mesh Hartree-Fock method for field strengths ranging from zero up to 2.35 10^9 T. With increasing field strength the ground state undergoes six transitions involving seven different electronic configurations which belong to three groups with different spin projections S_z=-1,-2,-3. For weak fields the ground state configuration arises from the field-free 1s^2 2s^2 2p_0 2p_{-1}, S_z=-1 configuration. With increasing field strength the ground state involves the four S_z=-2 configurations 1s^22s2p_0 2p_{-1}2p_{+1}, 1s^22s2p_0 2p_{-1}3d_{-2}, 1s^22p_0 2p_{-1}3d_{-2}4f_{-3} and 1s^22p_{-1}3d_{-2}4f_{-3}5g_{-4}, followed by the two fully spin polarized S_z=-3 configurations 1s2p_02p_{-1}3d_{-2}4f_{-3}5g_{-4} and 1s2p_{-1}3d_{-2}4f_{-3}5g_{-4}6h_{-5}. The last configuration forms the ground state of the carbon atom in the high field regime \gamma>18.664. The above series of ground state configurations is extracted from the results of numerical calculations for more than twenty electronic configurations selected due to some general energetical arguments.Comment: 6 figures,acc. Phys.Rev.
    corecore